## Analytic Geometry Solutions

1. Using the line segment from $O(0,0)$ to $C(9,0)$ as the base and noting that the height is 4 , the area of triangle $O C D$ is 18 . We let the vertical line be $x=k$. The line from $O(0,0)$ to $D(8,4)$ is $y=\frac{1}{2} x$ and this line intersects the vertical line at $K\left(k, \frac{1}{2 k}\right)$. Let $L=(k, 0)$ be the $x$-intercept of the vertical line. The area of triangle $O K L$ must be $\frac{18}{2}=9$. Therefore, $\frac{1}{4} k^{2}=9$ and so the vertical line required is $x=6$. (The value of $k=-6$ is not admissible since the line $x=-6$ does not intersect the triangle.)
2. There are several ways to solve this question. We will give two solutions using analytic geometry.

## Solution 1

If the line is tangent to the circle, then the distance from the centre $(0,0)$ to the line $y=x+c$ (or $x-y+c=0$ ) equals the radius of the circle which is $2 \sqrt{2}$. Using the formula for distance from a point to a line,

$$
2 \sqrt{2}=\frac{|c|}{\sqrt{2}}
$$

Therefore, we have $c= \pm 4$.

## Solution 2

We substitute $y=x+c$ into the equation of the circle to obtain $x^{2}+(x+c)^{2}=8$. Expanding we obtain $2 x^{2}+2 x c+c^{2}-8=0$. If the line is tangent to the circle, then we need to find values of $c$ such that this quadratic has exactly one root. Therefore, it must be the case that

$$
\begin{aligned}
4 c^{2}-4(2)\left(c^{2}-8\right) & =0 \\
4 c^{2}-8 c^{2}-64 & =0 \\
4 c^{2} & =64 \\
c^{2} & =16 \\
c & = \pm 4
\end{aligned}
$$


3. There are two circles, the first with its centre at $(0,0)$ and with radius $|k|$, and the second with its centre at $(5,-12)$ and with radius 7 . The distance between the centres can be calculated to
be $\sqrt{(-5)^{2}+(12)^{2}}=13$. Since the two circles intersect only once, they can be either externally or internally tangent. If they are externally tangent, $|k|+7=13$ and so $k=6$ or $k=-6$. If they are internally tangent, $|k|-7=13$ and so $k=20$ or -20 . So we have 4 possible values of $k$ : $-6,6,-20$ and 20.


## 4. Solution 1

All lines that cut a circle in half pass through the centre. Now the perpendicular bisector of any chord passes through the centre. If we consider the vertical chord from $(0,0)$ to $(0,10)$, the perpendicular bisector is the horizontal line $y=5$. Similarly, if we consider the horizontal chord from $(0,0)$ to $(8,0)$, the perpendicular bisector is the vertical line $x=4$. These two lines intersect at $(4,5)$ and therefore, the centre is $(4,5)$. We require the $y$-intercept of the line through $(4,5)$ and $P(2,-3)$. This line is $y=4 x-11$ and the $y$-intercept is -11 .

## Solution 2

Observe that $\triangle A O B$ is right-angled at $O$, thus $A B$ is the diameter of the circle, and its midpoint $(4,5)$ is the centre of the circle. As in solution 1 , we require the $y$-intercept of the line that goes through $(4,5)$ and $P(2,-3)$. This line is $y=4 x-11$ and the $y$-intercept is -11 .

## Solution 3

The general equation of a circle with centre $(h, k)$ and radius $r$ is $(x-h)^{2}-(y-k)^{2}=r^{2}$. Substituting in the point $(0,0)$ we obtain the equation $h^{2}+k^{2}=r^{2}$. Substituting in the point $(0,10)$ we obtain the equation $h^{2}+(10-k)^{2}=r^{2}$. Therefore, $(10-k)^{2}=k^{2}$ which gives $k=5$.
Substituting the point $(8,0)$ into the equation of the circle gives $(8-h)^{2}+k^{2}=r^{2}$. Therefore, $(8-h)^{2}=h^{2}$ which gives $h=4$. As in solution 1 , we require the $y$-intercept of the line that goes through $(4,5)$ and $P(2,-3)$. This line is $y=4 x-11$ and the $y$-intercept is -11 .

5. Since the slopes of $A B$ and $A C$ are 1 and -1 respectively, the required line is vertical and its equation is $x=0$.

6. Consider a triangle with the following vertices: the origin, the centre of the circle and a point of tangency of one of the two tangents we are considering. Since there are two tangents, we have two such triangles. A tangent is perpendicular to the radius at the point of tangency and so these two triangles are right-angled. The two known sides of one of these right triangles are the radius 2 and the segment from $(0,0)$ to $(3,4)$ which has length 5 . Thus, the other side has length $\sqrt{21}$.


Since each of the tangents pass through the origin, their equations are of the form $y=m x$. We are interested in values of $m$ for which the line $y=m x$ intersects the circle only once. Substituting into the equation of the circle we get

$$
\begin{array}{r}
(x-3)^{2}+(m x-4)^{2}=4 \\
x^{2}-6 x+9+m^{2} x^{2}-8 m x+16=4 \\
\left(1+m^{2}\right) x^{2}-(6+8 m) x+21=0
\end{array}
$$

Now this quadratic will have one solution when its discriminant is zero. Thus, we are looking for values of $m$ that give a discriminant of 0 . So

$$
\begin{aligned}
(6+8 m)^{2}-4 \cdot 21 \cdot\left(1+m^{2}\right) & =0 \\
36+96 m+64 m^{2}-84-84 m^{2} & =0 \\
-20 m^{2}+96 m-48 & =0 \\
m & =\frac{12 \pm 2 \sqrt{21}}{5}
\end{aligned}
$$

Therefore, both tangents we are considering have length $\sqrt{21}$ and their slopes are $\frac{12 \pm 2 \sqrt{21}}{5}$.
7. The required set of points is the line that is the perpendicular bisector of the line segment $C D$. Since $C D$ has slope $-\frac{1}{2}$ and midpoint $M=\left(3, \frac{3}{2}\right)$, the required line passes through $M$ and has slope 2. The equation of the resulting line is $4 x-2 y-9=0$.
8. We present the solution that uses analytic geometry most directly. Let the coordinates of the points be $K(0,0), W(x, y), A(a, b)$ and $D(d, 0)$. Therefore, the coordinates of $M$ and $N$ are $M\left(\frac{x}{2}, \frac{y}{2}\right)$ and $N\left(\frac{a+d}{2}, \frac{b}{2}\right)$. Now we are given that $2 M N=A W+D K$. Therefore,

$$
2 \sqrt{\left(\frac{a+d-x}{2}\right)^{2}+\left(\frac{b-y}{2}\right)^{2}}=\sqrt{(a-x)^{2}+(b-y)^{2}}+d
$$

Squaring both sides and simplifying (using the fact that $d \neq 0$ ) gives

$$
\begin{aligned}
(a+d-x)^{2}+(b-y)^{2} & =(a-x)^{2}+(b-y)^{2}+2 d \sqrt{(a-x)^{2}+(b-y)^{2}}+d^{2} \\
2 d(a-x) & =2 d \sqrt{(a-x)^{2}+(b-y)^{2}} \\
(a-x) & =\sqrt{(a-x)^{2}+(b-y)^{2}}
\end{aligned}
$$

Squaring both sides again and simplifying gives

$$
\begin{aligned}
& (a-x)^{2}=(a-x)^{2}+(b-y)^{2} \\
& (b-y)^{2}=0
\end{aligned}
$$

This result gives $b=y$ and implies that the slope of $A W$ is 0 . Therefore, $A W$ is parallel to $K D$.
9. Let the coordinates of $A$ and $B$ be $(a, c)$ and $(b, d)$, respectively. Point $A$ satisfies the equation of the first line and point $B$ satisfies the equation of the second line and so $4 a+3 c-48=0$ and $b+3 d+10=0$. Moreover, since $(4,2)$ is the midpoint, we know $\frac{a+b}{2}=4$ and $\frac{c+d}{2}=2$. Thus, $b=8-a$ and $d=4-c$. Substituting these into the second equation above and simplifying we obtain $-a-3 c+30=0$. Adding this equation to the first equation gives $3 a-18=0$ and so $a=6$. From the first equation we obtain that $c=8$. Therefore, $b=2$ and $d=-4$. So the coordinates of $A$ and $B$ are $(6,8)$ and $B(2,-4)$, respectively.


