Exponents and Logarithms Solutions

1. We have $\log _{x}(2 \cdot 4 \cdot 8)=1$ which implies that $\log _{x}(64)=1$. Therefore, $x=64$.
2. Since $12=2^{2} \cdot 3$ it follows that

$$
\begin{aligned}
12^{2 x+1} & =2^{3 x+7} \cdot 3^{3 x-4} \\
2^{2(2 x+1)} \cdot 3^{2 x+1} & =2^{3 x+7} \cdot 3^{3 x-4} \\
2^{2(2 x+1)-3 x-7} & =3^{3 x-4-2 x-1} \\
2^{x-5} & =3^{x-5}
\end{aligned}
$$

The graphs of $y=2^{x-5}$ and $y=3^{x-5}$ intersect only at $x=5$ and $y=1$. (Since $2^{z}=3^{z}$ only for $z=0$.) Therefore, $x=5$ is the only solution.
3. This expression equals $\log _{10}\left(\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \ldots \ldots \frac{200}{199}\right)=\log _{10}\left(\frac{200}{2}\right)=\log _{10} 100=2$.
4. For the first equation we know that $x, y \neq 0$. The second equation states $x y^{-2}=3^{-3}$ which gives us $x^{3} y^{-6}=3^{-9}$ after cubing both sides. Since neither side of this new equation is 0 we can divide the first equation by this new equation to eliminate x.

$$
\begin{aligned}
\frac{x^{3} y^{5}}{x^{3} y^{-6}} & =\frac{2^{11} 3^{13}}{3^{-9}} \\
y^{11} & =2^{11} \cdot 3^{22} \\
y^{11} & =2^{11} \cdot\left(3^{2}\right)^{11} \\
y^{11} & =(2 \cdot 9)^{11} \\
y & =18 .
\end{aligned}
$$

Therefore, $x=\frac{y^{2}}{27}=12$.
5. $\log _{8}(18)=\log _{8} 2+\log _{8} 9=\frac{1}{3}+\log _{8} 3^{2}=\frac{1}{3}+2 \log _{8} 3=\frac{1}{3}+2 k=2 k+\frac{1}{3}$
6. Solution 1

We express the logarithms in exponential form to arrive at: $2 x=2^{y}$ and $x=4^{y}$. Thus,

$$
\begin{aligned}
2^{y} & =2\left(4^{y}\right) \\
2^{y} & =2\left(2^{2 y}\right) \\
2^{y} & =2^{2 y+1} \\
y & =2 y+1 \\
y & =-1
\end{aligned}
$$

Thus, $x=4^{-1}=\frac{1}{4}$. Therefore, the point of intersection is $\left(\frac{1}{4},-1\right)$.

Solution 2

Substituting one equation into the other we obtain

$$
\begin{aligned}
\log _{2} 2 x & =\log _{4} x \\
\frac{\log 2 x}{\log 2} & =\frac{\log x}{\log 4} \\
\frac{\log 2 x}{\log 2} & =\frac{\log x}{\log 2^{2}} \\
\frac{\log 2 x}{\log 2} & =\frac{\log x}{2 \log 2} \\
2 \log 2 x & =\log x \\
2 \log 2+2 \log x & =\log x \\
\log x & =-2 \log 2 \\
\log x & =\log 2^{-2} \\
\log x & =\log \frac{1}{4}
\end{aligned}
$$

Therefore, $x=\frac{1}{4}$. Substituting this value back into either of the original equations and we obtain that $y=-1$. Therefore, the point of intersection is $\left(\frac{1}{4},-1\right)$.
7. We note first that $x=a^{y}$ for all points on the curve. The midpoint of $A B$ is given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$. Since we draw a horizontal line through the midpoint, $y_{3}=\frac{y_{1}+y_{2}}{2}$, we have that

$$
\begin{aligned}
\left(x_{3}\right)^{2} & =\left(a^{y_{3}}\right)^{2} \\
& =\left(a^{\frac{y_{1}+y_{2}}{2}}\right)^{2} \\
& =\left(a^{y_{1}}\right)\left(a^{y_{2}}\right) \\
& =x_{1} x_{2} .
\end{aligned}
$$

8. Given that the graph of the function passes through $(2,1)$, we know that $a \neq 0$. We have $1=a\left(2^{r}\right)$ and $4=a\left(32^{r}\right)$. Since neither side of the first equation is 0 , we can divide the second equation by the first to obtain $4=\frac{32^{r}}{2^{r}}=\frac{2^{r} \cdot 16^{r}}{2^{r}}=16^{r}$. Therefore, $r=\frac{1}{2}$.
9. Factoring both sides of the equation $2^{x+3}+2^{x}=3^{y+2}-3^{y}$ gives

$$
\begin{aligned}
\left(2^{3}+1\right) 2^{x} & =\left(3^{2}-1\right) 3^{y} \\
9 \cdot 2^{x} & =8 \cdot 3^{y} \\
3^{2} \cdot 2^{x} & =2^{3} \cdot 3^{y} \\
2^{x-3} & =3^{y-2}
\end{aligned}
$$

Since x and y are integers, and the only integer power of 2 that is also an integer power of 3 is the number $1=2^{0}=3^{0}$, we have $x=3$ and $y=2$.
10. If $f(x)=2^{4 x-2}$, then $f(x) \cdot f(1-x)=2^{4 x-2} \cdot 2^{4(1-x)-2}=2^{4 x-2+4-4 x-2}=2^{0}=1$.
11. Observe that the argument of both logarithms must be positive and so $x>6$. Now

$$
\begin{aligned}
\log _{5}(x-2)+\log _{5}(x-6) & =2 \\
\log _{5}((x-2)(x-6)) & =2 \\
(x-2)(x-6) & =25 \\
x^{2}-8 x-13 & =0 \\
x & =4 \pm \sqrt{29}
\end{aligned}
$$

However, since $x>6$, we have that $x=4+\sqrt{29}$.
12. If a, b, c is a geometric sequence, then $\frac{b}{a}=\frac{c}{b}$. It follows that $\log _{x}\left(\frac{b}{a}\right)=\log _{x}\left(\frac{c}{b}\right)$ which implies $\log _{x} b-\log _{x} a=\log _{x} c-\log _{x} b$. Therefore, the logarithms form an arithmetic sequence. If $\log _{x} a, \log _{x} b, \log _{x} c$ form an arithmetic sequence, then

$$
\begin{aligned}
\log _{x} b-\log _{x} a & =\log _{x} c-\log _{x} b \\
\log _{x}\left(\frac{b}{a}\right) & =\log _{x}\left(\frac{c}{b}\right) \\
\frac{b}{a} & =\frac{c}{b} \quad \text { since the log function takes on each value only once }
\end{aligned}
$$

Thus, a, b, c form a geometric sequence.
13. Using exponent rules and arithmetic, we manipulate the given equation:

$$
\begin{aligned}
3^{x+2}+2^{x+2}+2^{x} & =2^{x+5}+3^{x} \\
3^{x} 3^{2}+2^{x} 2^{2}+2^{x} & =2^{x} 2^{5}+3^{x} \\
9\left(3^{x}\right)+4\left(2^{x}\right)+2^{x} & =32\left(2^{x}\right)+3^{x} \\
8\left(3^{x}\right) & =27\left(2^{x}\right) \\
\frac{3^{x}}{2^{x}} & =\frac{27}{8} \\
\left(\frac{3}{2}\right)^{x} & =\left(\frac{3}{2}\right)^{3}
\end{aligned}
$$

Since the two expressions are equal and the bases are equal, then the exponents must be equal, and so $x=3$.
14. Let $a=\log _{10} x$. Then $\left(\log _{10} x\right)^{\log _{10}\left(\log _{10} x\right)}=10000$ becomes $a^{\log _{10} a}=10^{4}$.

Taking the base $10 \operatorname{logarithm}$ of both sides and using the fact that $\log _{10}\left(a^{b}\right)=b \log _{10} a$, we obtain $\left(\log _{10} a\right)\left(\log _{10} a\right)=4$ or $\left(\log _{10} a\right)^{2}=4$. Therefore, $\log _{10} a= \pm 2$ and so $\log _{10}\left(\log _{10} x\right)= \pm 2$.
If $\log _{10}\left(\log _{10} x\right)=2$, then $\log _{10} x=10^{2}=100$ and so $x=10^{100}$.
If $\log _{10}\left(\log _{10} x\right)=-2$, then $\log _{10} x=10^{-2}=\frac{1}{100}$ and so $x=10^{1 / 100}$. Therefore, $x=10^{100}$ or $x=10^{1 / 100}$.
15. Note that $x \neq 1$ since 1 cannot be the base of a logarithm. This tells us that $\log x \neq 0$. Using the fact that $\log _{a} b=\frac{\log b}{\log a}$ and then using other logarithm laws, we obtain the following equivalent equations:

$$
\begin{aligned}
\log _{4} x-\log _{x} 16 & =\frac{7}{6}-\log _{x} 8 \\
\frac{\log x}{\log 4}-\frac{\log 16}{\log x} & =\frac{7}{6}-\frac{\log 8}{\log x} \quad(\text { note that } x \neq 1, \text { so } \log x \neq 0) \\
\frac{\log x}{\log 4} & =\frac{7}{6}+\frac{\log 16-\log 8}{\log x} \\
\frac{\log x}{\log \left(2^{2}\right)} & =\frac{7}{6}+\frac{\log \left(\frac{16}{8}\right)}{\log x} \\
\frac{\log x}{2 \log 2} & =\frac{7}{6}+\frac{\log 2}{\log x} \\
\frac{1}{2}\left(\frac{\log x}{\log 2}\right) & =\frac{7}{6}+\frac{\log 2}{\log x}
\end{aligned}
$$

Letting $t=\frac{\log x}{\log 2}=\log _{2} x$ and noting that $t \neq 0$ since $x \neq 1$, we obtain the following equations equivalent to the previous ones:

$$
\begin{aligned}
\frac{t}{2} & =\frac{7}{6}+\frac{1}{t} \\
3 t^{2} & =7 t+6 \quad \text { (multiplying both sides by } 6 t) \\
3 t^{2}-7 t-6 & =0 \\
(3 t+2)(t-3) & =0
\end{aligned}
$$

Therefore, the original equation is equivalent to $t=-\frac{2}{3}$ or $t=3$.
Converting back to the variable x, we obtain $\log _{2} x=-\frac{2}{3}$ or $\log _{2} x=3$, which gives $x=2^{-2 / 3}$ or $x=2^{3}=8$.

