Functions, Equations and Polynomials Solutions

1. Subtract the first equation from the second, rearrange the resulting expression and then factor to obtain

$$
\begin{aligned}
-8 x+y+x y-8 & =0 \\
x y-8 x+y-8 & =0 \\
x(y-8)+y-8 & =0 \\
(x+1)(y-8) & =0
\end{aligned}
$$

Therefore, $x=-1$ or $y=8$. If $x=-1$, then substituting into the first equation and solving we obtain that $y=-9$. If $y=8$, then substituting into the first equation and solving we obtain $x=4 \pm 2 \sqrt{2}$. Therefore, the solutions are $(-1,-9)$ and $(4 \pm 2 \sqrt{2}, 8)$.

2. Solution 1

We are asked for the x value of the midpoint of zeros, which is the x value of the vertex of the parabola. The equation is written in vertex form already and so $a=1$.

Solution 2

Find the x-intercepts:

$$
\begin{aligned}
(x-1)^{2}-4 & =0 \\
(x-1)^{2} & =4 \\
x & =1 \pm 2
\end{aligned}
$$

Thus, $x=3$ or $x=-1$. Thus, $a=\frac{-1+3}{2}=1$.
3. (a) Consider $a=0$ and $a=1$ and find the intersection point of the resulting equations, $y=x^{2}$ and $y=x^{2}+2 x+1$. Subtracting the equations we obtain $0=2 x+1$. Therefore, $x=-\frac{1}{2}$ and so the intersection point is $\left(-\frac{1}{2}, \frac{1}{4}\right)$. Now substitute $x=-\frac{1}{2}$ into the general equation. Therefore,

$$
\begin{aligned}
y & =x^{2}+2 a x+a \\
& =\frac{1}{4}+2 a \cdot\left(\frac{-1}{2}\right)+a \\
& =\frac{1}{4}
\end{aligned}
$$

Since $\left(-\frac{1}{2}, \frac{1}{4}\right)$ satisfies the general equation, it is a point on all of the parabolas.
(b) Now $y=x^{2}+2 a x+a=(x+a)^{2}+a-a^{2}$ and so the vertex is at ($-a, a-a^{2}$). If we represent the coordinates of the vertex by (p, q) we have $p=-a$ and $q=a-a^{2}$ or $q=-p^{2}-p$, the required parabola. Completing the square we obtain

$$
q=-\left(p^{2}+p+\frac{1}{4}\right)+\frac{1}{4}=-\left(p+\frac{1}{2}\right)^{2}+\frac{1}{4}
$$

and so we see that the vertex of this parabola is $\left(-\frac{1}{2}, \frac{1}{4}\right)$, the common point found in part (a)
4. Factoring both equations we arrive at:

$$
\begin{array}{r}
p\left(1+r+r^{2}\right)=26 \\
p^{2} r\left(1+r+r^{2}\right)=156 \tag{2}
\end{array}
$$

From equation (1) we can see neither of the factors of its left-hand side are 0 . Dividing (2) by (1) gives $p r=6$. Substituting this relation back into (1) we get

$$
\begin{aligned}
\frac{6}{r}+6+6 r & =26 \\
6-20 r+6 r^{2} & =0 \\
3 r^{2}-10 r+3 & =0 \\
(3 r-1)(r-3) & =0
\end{aligned}
$$

Therefore, $r=\frac{1}{3}$ or $r=3$. Hence $(p, r)=(2,3)$ or $\left(18, \frac{1}{3}\right)$.
5. We assume, on the contrary, that the coefficients are in geometric sequence. Then $\frac{b}{a}=\frac{c}{b}$ which implies that $b^{2}=a c$. But now the discriminant $b^{2}-4 a c=-3 b^{2}<0$, so that the roots are not real. Thus, we have a contradiction to the condition set out in the statement of the problem and our assumption is false.
6. Let r and s be the integer roots. The equation can be written as

$$
\begin{aligned}
a(x-r)(x-s) & =a\left(x^{2}-(r+s) x+r s\right) \\
& =a x^{2}-a(r+s) x+a r s \\
& =a x^{2}+b x+c
\end{aligned}
$$

with $b=-a(r+s)$ and $c=a r s$. Since a, b, c are in arithmetic sequence, we have

$$
\begin{aligned}
c-b & =b-a \\
a+c-2 b & =0 \\
a+a r s+2 a(r+s) & =0 \\
1+r s+2(r+s) & =0 \quad(\text { we can divide by } a \text { since } a \neq 0) \\
r s+2 r+2 s+4 & =3 \\
(r+2)(s+2) & =3
\end{aligned}
$$

Ignoring the order of the factors, we can factor 3 as a product of two integers in two ways: $3=1(3)$ or $3=(-1)(-3)$. Therefore, the two possibilities for the roots of quadratic are: (i) -1 and 1 or (ii) -3 and -5 .

7. Solution 1

Multiplying out and collecting terms results in $x^{4}-6 x^{3}+8 x^{2}+2 x-1=0$. We look for a factoring with integer coefficients, using the fact that the first and last coefficients are 1 and -1 , respectively. So

$$
x^{4}-6 x^{3}+8 x^{2}+2 x-1=\left(x^{2}+a x+1\right)\left(x^{2}+b x-1\right)
$$

where a and b are undetermined coefficients. However, expanding and comparing coefficients gives $a+b=-6$ and $-a+b=2$ and $a b=8$. Since all three equations are satisfied by $a=-4$ and $b=-2$, we have factored the original expression as

$$
x^{4}-6 x^{3}+8 x^{2}+2 x-1=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-1\right)
$$

Factoring these two quadratics gives the roots $x=2 \pm \sqrt{3}$ and $x=1 \pm \sqrt{2}$.

Solution 2

We observe that the original equation is of the form $f(f(x))=x$, where $f(x)=x^{2}-3 x+1$. Now if we can find x such that $f(x)=x$, then $f(f(x))=x$. So we solve $f(x)=x^{2}-3 x+1=x$ which gives the first factor $x^{2}-4 x+1$ above. With polynomial division, we can then determine that

$$
x^{4}-6 x^{3}+8 x^{2}+2 x-1=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-1\right)
$$

and continue as in Solution 1.
8. The vertex has $x=2$ and $y=-16$ and so $A=(2,-16)$. When $y=0$ we get $0=x^{2}-4 x-12$ which factors to give us intercepts at -2 and 6 . The larger value is 6 , and so $B=(6,0)$. Therefore, we want the line through $(2,-16)$ and $(6,0)$. Finding the slope of the line and using the second point, the equation of the line is

$$
y=\left(\frac{0+16}{6-2}\right)(x-6)
$$

which simplifies to $y=4 x-24$.

9. Solution 1

Multiplying gives

$$
\begin{aligned}
x^{2}-(b+c) x+b c & =a^{2}-(b+c) a+b c \\
x^{2}-(b+c) x+a(-a+b+c) & =0
\end{aligned}
$$

The roots are

$$
\begin{aligned}
x & =\frac{b+c \pm \sqrt{(b+c)^{2}-4 a(-a+b+c)}}{2} \\
& =\frac{b+c \pm \sqrt{(b+c)^{2}+4 a^{2}-4 a(b+c)}}{2} \\
& =\frac{b+c \pm \sqrt{(b+c-2 a)^{2}}}{2}
\end{aligned}
$$

Thus, $x=-a+b+c$ or $x=a$.

Solution 2

Observe that $x=a$ is one solution. Rearranging as in the first solution we get

$$
x^{2}-(b+c) x+a(-a+b+c)=0
$$

Using the sum (or the product) of the roots, we determine that other root is $x=-a+b+c$.
10. Since $x=-2$ is a solution of $x^{3}-7 x-6=0$, we know that $x+2$ is a factor of $x^{3}-7 x-6$. Factoring (or using long division) we obtain

$$
\begin{aligned}
x^{3}-7 x-6 & =(x+2)\left(x^{2}-2 x-3\right) \\
& =(x+2)(x+1)(x-3)
\end{aligned}
$$

Thus, the roots are $-2,-1$ and 3 .
11. Let the roots be r and s. Using the sum of the roots and the product of the roots we obtain

$$
\begin{aligned}
r+s & =\frac{-4(a-2)}{4} \\
& =2-a
\end{aligned}
$$

and

$$
\begin{aligned}
r s & =\frac{-8 a^{2}+14 a+31}{4} \\
& =-2 a^{2}+\frac{7}{2} a+\frac{31}{4}
\end{aligned}
$$

Then

$$
\begin{aligned}
r^{2}+s^{2} & =(r+s)^{2}-2 r s \\
& =(2-a)^{2}-2\left(-2 a^{2}+\frac{7}{2} a+\frac{31}{4}\right) \\
& =4-4 a+a^{2}+4 a^{2}-7 a-\frac{31}{2} \\
& =5 a^{2}-11 a-\frac{23}{2} .
\end{aligned}
$$

It appears that the minimum value should be at the vertex of the parabola $f(a)=5 a^{2}-11 a-\frac{23}{2}$, that is, at $a=\frac{11}{10}$ (found by completing the square). But we have ignored the condition that the roots are real. The discriminant of the original equation is

$$
\begin{aligned}
B^{2}-4 A C & =[4(a-2)]^{2}-4(4)\left(-8 a^{2}+14 a+31\right) \\
& =16\left(a^{2}-4 a+4\right)+128 a^{2}-224 a-496 \\
& =144 a^{2}-288 a-432 \\
& =144\left(a^{2}-2 a-3\right) \\
& =144(a-3)(a+1) .
\end{aligned}
$$

Thus, we have real roots only when $a \geq 3$ or $a \leq-1$. Therefore, $a=\frac{11}{10}$ cannot be our final answer, since the roots are not real for this value. However $f(a)=5 a^{2}-11 a-\frac{23}{2}$ is a parabola opening up and is symmetrical about its axis of symmetry $a=\frac{11}{10}$. So we move to the nearest value of a to the axis of symmetry that gives real roots, which is $a=3$.
12. Let $g(2)=k$. Since f and g are inverse functions, we know that $f(k)=2$. We need to solve

$$
\begin{aligned}
\frac{3 k-7}{k+1} & =2 \\
3 k-7 & =2(k+1) \\
k & =9
\end{aligned}
$$

Thus, $g(2)=9$.
13. Complete the square to obtain

$$
\begin{aligned}
y & =-2 x^{2}-4 a x+k \\
& =-2\left(x^{2}+2 a x+a^{2}\right)+k+2 a^{2} \\
& =-2(x+a)^{2}+k+2 a^{2}
\end{aligned}
$$

The vertex is at $\left(-a, k+2 a^{2}\right)$ which we know is $(-2,7)$. Therefore, solving we obtain $a=2$ and $k=-1$.
14. Using the sum and the product of the roots we have the four equations:

$$
\begin{array}{r}
a+b=-c \\
a b=d \\
c+d=-a \\
c d=b
\end{array}
$$

Therefore,

$$
\begin{aligned}
-(c+d)+c d & =-c \\
c d-d & =0 \\
d(c-1) & =0
\end{aligned}
$$

But none of a, b, c or d are zero, so $c=1$. Then we get $d=b$. Substituting $d=b$ into $a b=d$ we get $a=1$. Then $d=b=-2$. Thus, $a+b+c+d=-2$.
15. The most common way to do this problem uses calculus. However, we make the substitution $z=x-4$. To get y in terms of z, try

$$
\begin{aligned}
y & =x^{2}-2 x-3 \\
& =(x-4)^{2}+6 x-19 \\
& =(x-4)^{2}+6(x-4)+5 \\
& =z^{2}+6 z+5
\end{aligned}
$$

Therefore, the value we want to minimize is $\frac{y-4}{(x-4)^{2}}=\frac{z^{2}+6 z+1}{z^{2}}=1+\frac{6}{z}+\frac{1}{z^{2}}$. If we now let $u=\frac{1}{z}$, we have the parabola $1+6 u+u^{2}$ which opens up and has its minimum at $u=-3$ with minimum value of -8 . Note that since x can assume any real value except 4 , we know that z and u will assume all real values except zero. Thus, the minimum value of this expression is -8 .

16. Solution 1

Since the function g is linear and has positive slope, it is one-to-one and so it is invertible.
This means that $g^{-1}(g(a))=a$ for every real number a and $g\left(g^{-1}(b)\right)=b$ for every real number b.

Therefore, $g\left(f\left(g^{-1}(g(a))\right)\right)=g(f(a))$ for every real number a.
This means that

$$
\begin{aligned}
g(f(a)) & =g\left(f\left(g^{-1}(g(a))\right)\right) \\
& =2(g(a))^{2}+16 g(a)+26 \\
& =2(2 a-4)^{2}+16(2 a-4)+26 \\
& =2\left(4 a^{2}-16 a+16\right)+32 a-64+26 \\
& =8 a^{2}-6
\end{aligned}
$$

Furthermore, if $b=f(a)$, then $g^{-1}(g(f(a)))=g^{-1}(g(b))=b=f(a)$. Therefore,

$$
f(a)=g^{-1}(g(f(a)))=g^{-1}\left(8 a^{2}-6\right)
$$

Since $g(x)=2 x-4$, we have $y=2 g^{-1}(y)-4$ and so $g^{-1}(y)=\frac{1}{2} y+2$. Therefore,

$$
f(a)=\frac{1}{2}\left(8 a^{2}-6\right)+2=4 a^{2}-1
$$

and so $f(\pi)=4 \pi^{2}-1$.

Solution 2

Since the function g is linear and has positive slope, it is one-to-one and so it is invertible.
To find a formula for $g^{-1}(y)$, we start with the equation $g(x)=2 x-4$, convert to $y=2 g^{-1}(y)-4$ and then solve for $g^{-1}(y)$ to obtain $2 g^{-1}(y)=y+4$ and so $g^{-1}(y)=\frac{y+4}{2}$.
We are given that $g\left(f\left(g^{-1}(x)\right)\right)=2 x^{2}+16 x+26$.

We can apply the function g^{-1} to both sides successively to obtain

$$
\begin{aligned}
f\left(g^{-1}(x)\right) & =g^{-1}\left(2 x^{2}+16 x+26\right) \\
f\left(g^{-1}(x)\right) & \left.=\frac{\left(2 x^{2}+16 x+26\right)+4}{2} \quad \text { (knowing a formula for } g^{-1}\right) \\
f\left(g^{-1}(x)\right) & =x^{2}+8 x+15 \\
f\left(\frac{x+4}{2}\right) & \left.=x^{2}+8 x+15 \quad \text { (knowing a formula for } g^{-1}\right) \\
f\left(\frac{x+4}{2}\right) & =x^{2}+8 x+16-1 \\
f\left(\frac{x+4}{2}\right) & =(x+4)^{2}-1
\end{aligned}
$$

We want to determine the value of $f(\pi)$.
Thus, we can replace $\frac{x+4}{2}$ with π, which is equivalent to replacing $x+4$ with 2π.
Thus, $f(\pi)=(2 \pi)^{2}-1=4 \pi^{2}-1$.

