Functions, Equations and Polynomials Solutions

1. Subtract the first equation from the second, rearrange the resulting expression and then factor to obtain

$$-8x + y + xy - 8 = 0$$

$$xy - 8x + y - 8 = 0$$

$$x(y - 8) + y - 8 = 0$$

$$(x + 1)(y - 8) = 0$$

Therefore, x = -1 or y = 8. If x = -1, then substituting into the first equation and solving we obtain that y = -9. If y = 8, then substituting into the first equation and solving we obtain $x = 4 \pm 2\sqrt{2}$. Therefore, the solutions are (-1, -9) and $(4 \pm 2\sqrt{2}, 8)$.

2. Solution 1

We are asked for the x value of the midpoint of zeros, which is the x value of the vertex of the parabola. The equation is written in vertex form already and so a = 1.

Solution 2

Find the *x*-intercepts:

$$(x-1)^2 - 4 = 0$$

 $(x-1)^2 = 4$
 $x = 1 \pm 2$

Thus, x = 3 or x = -1. Thus, $a = \frac{-1+3}{2} = 1$.

3. (a) Consider a = 0 and a = 1 and find the intersection point of the resulting equations, $y = x^2$ and $y = x^2 + 2x + 1$. Subtracting the equations we obtain 0 = 2x + 1. Therefore, $x = -\frac{1}{2}$ and so the intersection point is $\left(-\frac{1}{2}, \frac{1}{4}\right)$. Now substitute $x = -\frac{1}{2}$ into the general equation. Therefore,

$$y = x^{2} + 2ax + a$$
$$= \frac{1}{4} + 2a \cdot \left(\frac{-1}{2}\right) + a$$
$$= \frac{1}{4}$$

Since $\left(-\frac{1}{2}, \frac{1}{4}\right)$ satisfies the general equation, it is a point on all of the parabolas.

(b) Now $y = x^2 + 2ax + a = (x+a)^2 + a - a^2$ and so the vertex is at $(-a, a - a^2)$. If we represent the coordinates of the vertex by (p,q) we have p = -a and $q = a - a^2$ or $q = -p^2 - p$, the required parabola. Completing the square we obtain

$$q = -\left(p^2 + p + \frac{1}{4}\right) + \frac{1}{4} = -\left(p + \frac{1}{2}\right)^2 + \frac{1}{4}$$

and so we see that the vertex of this parabola is $\left(-\frac{1}{2},\frac{1}{4}\right)$, the common point found in part (a)

4. Factoring both equations we arrive at:

$$p(1+r+r^2) = 26 (1)$$

$$p^2 r (1 + r + r^2) = 156 \tag{2}$$

From equation (1) we can see neither of the factors of its left-hand side are 0. Dividing (2) by (1) gives pr = 6. Substituting this relation back into (1) we get

$$\frac{6}{r} + 6 + 6r = 26$$

$$6 - 20r + 6r^2 = 0$$

$$3r^2 - 10r + 3 = 0$$

$$(3r - 1)(r - 3) = 0$$

Therefore, $r = \frac{1}{3}$ or $r = 3$. Hence $(p, r) = (2, 3)$ or $\left(18, \frac{1}{3}\right)$.

- 5. We assume, on the contrary, that the coefficients are in geometric sequence. Then $\frac{b}{a} = \frac{c}{b}$ which implies that $b^2 = ac$. But now the discriminant $b^2 4ac = -3b^2 < 0$, so that the roots are not real. Thus, we have a contradiction to the condition set out in the statement of the problem and our assumption is false.
- 6. Let r and s be the integer roots. The equation can be written as

$$a(x-r)(x-s) = a(x^2 - (r+s)x + rs)$$
$$= ax^2 - a(r+s)x + ars$$
$$= ax^2 + bx + c$$

with b = -a(r+s) and c = ars. Since a, b, c are in arithmetic sequence, we have

$$c - b = b - a$$

$$a + c - 2b = 0$$

$$a + ars + 2a(r + s) = 0$$

$$1 + rs + 2(r + s) = 0 \quad (\text{we can divide by } a \text{ since } a \neq 0)$$

$$rs + 2r + 2s + 4 = 3$$

$$(r + 2)(s + 2) = 3$$

Ignoring the order of the factors, we can factor 3 as a product of two integers in two ways: 3 = 1(3) or 3 = (-1)(-3). Therefore, the two possibilities for the roots of quadratic are: (i) -1 and 1 or (ii) -3 and -5.

7. Solution 1

Multiplying out and collecting terms results in $x^4 - 6x^3 + 8x^2 + 2x - 1 = 0$. We look for a factoring with integer coefficients, using the fact that the first and last coefficients are 1 and -1, respectively. So

$$x^{4} - 6x^{3} + 8x^{2} + 2x - 1 = (x^{2} + ax + 1)(x^{2} + bx - 1)$$

where a and b are undetermined coefficients. However, expanding and comparing coefficients gives a + b = -6 and -a + b = 2 and ab = 8. Since all three equations are satisfied by a = -4 and b = -2, we have factored the original expression as

$$x^{4} - 6x^{3} + 8x^{2} + 2x - 1 = (x^{2} - 4x + 1)(x^{2} - 2x - 1)$$

Factoring these two quadratics gives the roots $x = 2 \pm \sqrt{3}$ and $x = 1 \pm \sqrt{2}$.

Solution 2

We observe that the original equation is of the form f(f(x)) = x, where $f(x) = x^2 - 3x + 1$. Now if we can find x such that f(x) = x, then f(f(x)) = x. So we solve $f(x) = x^2 - 3x + 1 = x$ which gives the first factor $x^2 - 4x + 1$ above. With polynomial division, we can then determine that

$$x^{4} - 6x^{3} + 8x^{2} + 2x - 1 = (x^{2} - 4x + 1)(x^{2} - 2x - 1)$$

and continue as in Solution 1.

8. The vertex has x = 2 and y = -16 and so A = (2, -16). When y = 0 we get $0 = x^2 - 4x - 12$ which factors to give us intercepts at -2 and 6. The larger value is 6, and so B = (6, 0). Therefore, we want the line through (2, -16) and (6, 0). Finding the slope of the line and using the second point, the equation of the line is

$$y = \left(\frac{0+16}{6-2}\right)(x-6)$$

which simplifies to y = 4x - 24.

9. Solution 1

Multiplying gives

$$x^{2} - (b+c)x + bc = a^{2} - (b+c)a + bc$$
$$x^{2} - (b+c)x + a(-a+b+c) = 0$$

The roots are

$$x = \frac{b + c \pm \sqrt{(b + c)^2 - 4a(-a + b + c)}}{2}$$
$$= \frac{b + c \pm \sqrt{(b + c)^2 + 4a^2 - 4a(b + c)}}{2}$$
$$= \frac{b + c \pm \sqrt{(b + c - 2a)^2}}{2}$$

Thus, x = -a + b + c or x = a.

Solution 2

Observe that x = a is one solution. Rearranging as in the first solution we get

$$x^{2} - (b+c)x + a(-a+b+c) = 0$$

Using the sum (or the product) of the roots, we determine that other root is x = -a + b + c.

10. Since x = -2 is a solution of $x^3 - 7x - 6 = 0$, we know that x + 2 is a factor of $x^3 - 7x - 6$. Factoring (or using long division) we obtain

$$x^{3} - 7x - 6 = (x + 2)(x^{2} - 2x - 3)$$
$$= (x + 2)(x + 1)(x - 3)$$

Thus, the roots are -2, -1 and 3.

11. Let the roots be r and s. Using the sum of the roots and the product of the roots we obtain

$$r+s = \frac{-4(a-2)}{4}$$
$$= 2-a$$

and

$$rs = \frac{-8a^2 + 14a + 31}{4}$$
$$= -2a^2 + \frac{7}{2}a + \frac{31}{4}$$

Then

$$r^{2} + s^{2} = (r+s)^{2} - 2rs$$

= $(2-a)^{2} - 2\left(-2a^{2} + \frac{7}{2}a + \frac{31}{4}\right)$
= $4 - 4a + a^{2} + 4a^{2} - 7a - \frac{31}{2}$
= $5a^{2} - 11a - \frac{23}{2}$.

It appears that the minimum value should be at the vertex of the parabola $f(a) = 5a^2 - 11a - \frac{23}{2}$, that is, at $a = \frac{11}{10}$ (found by completing the square). But we have ignored the condition that the roots are real. The discriminant of the original equation is

$$B^{2} - 4AC = [4(a-2)]^{2} - 4(4)(-8a^{2} + 14a + 31)$$

= 16(a² - 4a + 4) + 128a² - 224a - 496
= 144a² - 288a - 432
= 144(a² - 2a - 3)
= 144(a - 3)(a + 1).

Thus, we have real roots only when $a \ge 3$ or $a \le -1$. Therefore, $a = \frac{11}{10}$ cannot be our final answer, since the roots are not real for this value. However $f(a) = 5a^2 - 11a - \frac{23}{2}$ is a parabola opening up and is symmetrical about its axis of symmetry $a = \frac{11}{10}$. So we move to the nearest value of a to the axis of symmetry that gives real roots, which is a = 3.

12. Let g(2) = k. Since f and g are inverse functions, we know that f(k) = 2. We need to solve

$$\frac{3k-7}{k+1} = 2$$
$$3k-7 = 2(k+1)$$
$$k = 9$$

Thus, g(2) = 9.

13. Complete the square to obtain

$$y = -2x^{2} - 4ax + k$$

= -2(x² + 2ax + a²) + k + 2a²
= -2(x + a)² + k + 2a²

The vertex is at $(-a, k + 2a^2)$ which we know is (-2, 7). Therefore, solving we obtain a = 2 and k = -1.

14. Using the sum and the product of the roots we have the four equations:

$$a + b = -c$$
$$ab = d$$
$$c + d = -a$$
$$cd = b$$

Therefore,

$$-(c+d) + cd = -c$$
$$cd - d = 0$$
$$d(c-1) = 0$$

But none of a, b, c or d are zero, so c = 1. Then we get d = b. Substituting d = b into ab = d we get a = 1. Then d = b = -2. Thus, a + b + c + d = -2.

15. The most common way to do this problem uses calculus. However, we make the substitution z = x - 4. To get y in terms of z, try

$$y = x^{2} - 2x - 3$$

= $(x - 4)^{2} + 6x - 19$
= $(x - 4)^{2} + 6(x - 4) + 5$
= $z^{2} + 6z + 5$

Therefore, the value we want to minimize is $\frac{y-4}{(x-4)^2} = \frac{z^2+6z+1}{z^2} = 1 + \frac{6}{z} + \frac{1}{z^2}$. If we now let $u = \frac{1}{z}$, we have the parabola $1 + 6u + u^2$ which opens up and has its minimum at u = -3 with minimum value of -8. Note that since x can assume any real value except 4, we know that z and u will assume all real values except zero. Thus, the minimum value of this expression is -8.

16. Solution 1

Since the function g is linear and has positive slope, it is one-to-one and so it is invertible.

This means that $g^{-1}(g(a)) = a$ for every real number a and $g(g^{-1}(b)) = b$ for every real number b.

Therefore, $g(f(g^{-1}(g(a)))) = g(f(a))$ for every real number a. This means that

$$g(f(a)) = g(f(g^{-1}(g(a))))$$

= 2(g(a))² + 16g(a) + 26
= 2(2a - 4)² + 16(2a - 4) + 26
= 2(4a² - 16a + 16) + 32a - 64 + 26
= 8a² - 6

Furthermore, if b = f(a), then $g^{-1}(g(f(a))) = g^{-1}(g(b)) = b = f(a)$. Therefore,

$$f(a) = g^{-1}(g(f(a))) = g^{-1}(8a^2 - 6)$$

Since g(x) = 2x - 4, we have $y = 2g^{-1}(y) - 4$ and so $g^{-1}(y) = \frac{1}{2}y + 2$. Therefore,

$$f(a) = \frac{1}{2}(8a^2 - 6) + 2 = 4a^2 - 1$$

and so $f(\pi) = 4\pi^2 - 1$.

Solution 2

Since the function g is linear and has positive slope, it is one-to-one and so it is invertible. To find a formula for $g^{-1}(y)$, we start with the equation g(x) = 2x - 4, convert to $y = 2g^{-1}(y) - 4$ and then solve for $g^{-1}(y)$ to obtain $2g^{-1}(y) = y + 4$ and so $g^{-1}(y) = \frac{y+4}{2}$. We are given that $g(f(g^{-1}(x))) = 2x^2 + 16x + 26$.

We can apply the function g^{-1} to both sides successively to obtain

$$f(g^{-1}(x)) = g^{-1}(2x^2 + 16x + 26)$$

$$f(g^{-1}(x)) = \frac{(2x^2 + 16x + 26) + 4}{2} \quad \text{(knowing a formula for } g^{-1}\text{)}$$

$$f(g^{-1}(x)) = x^2 + 8x + 15$$

$$f\left(\frac{x+4}{2}\right) = x^2 + 8x + 15 \quad \text{(knowing a formula for } g^{-1}\text{)}$$

$$f\left(\frac{x+4}{2}\right) = x^2 + 8x + 16 - 1$$

$$f\left(\frac{x+4}{2}\right) = (x+4)^2 - 1$$

We want to determine the value of $f(\pi)$.

Thus, we can replace $\frac{x+4}{2}$ with π , which is equivalent to replacing x+4 with 2π . Thus, $f(\pi) = (2\pi)^2 - 1 = 4\pi^2 - 1$.