Sequences and Series Solutions

1. It is known that

$$
\begin{aligned}
\frac{t_{11}+t_{13}}{t_{5}+t_{7}} & =\frac{187500}{1500} \\
\frac{a r^{10}+a r^{12}}{a r^{4}+a r^{6}} & =125 \\
\frac{a r^{10}\left(1+r^{2}\right)}{a r^{4}\left(1+r^{2}\right)} & =125 \\
r^{6} & =125
\end{aligned}
$$

Thus, $r= \pm \sqrt{5}$. Therefore, $a r^{4}+a r^{6}=25 a+125 a=150 a=1500$ and so $a=10$. Therefore, the sequence begins $10,10 \sqrt{5}, 50$ or $10,-10 \sqrt{5}, 50$.
2. Let d be the common difference in the arithmetic sequence. Since the sequence has distinct terms, we know that $d \neq 0$. Then $b-c=-d, c-a=2 d$ and $a-b=-d$. Thus,

$$
\begin{aligned}
-d x^{2}+2 d x-d & =0 \\
-d(x-1)^{2} & =0
\end{aligned}
$$

and since $d \neq 0$, we have $x=1$.
3. From the arithmetic sequence we have that $4=x+d$ and $y=4+d$, where d is the common difference. Therefore, $x+y=4-d+4+d=8$. From the geometric sequence we have $x r=3$ and $3 r=y$, where r is the common ratio (which is not 0 since the second term is 3). Therefore, $x y=\frac{3}{r}(3 r)=9$. Thus, $\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x y}=\frac{8}{9}$.

4. Solution 1

Since the product of the three numbers is non-zero, so is r, the common ratio of the geometric sequence. We let the numbers be $\frac{a}{r}$, a, and ar. Thus, $a^{3}=125$ and so $a=5$. Therefore, the numbers are $\frac{5}{r}, 5$, and $5 r$. Let d be the common difference of the arithmetic sequence. We know that $\frac{5}{r}$ is the first term of the arithmetic sequence and 5 is the third term. Therefore, $5-\frac{5}{r}=2 d$. We also know that $5 r$ is the sixth term of the arithmetic sequence and therefore, $5 r-5=3 d$. Therefore,

$$
\begin{aligned}
\frac{5-\frac{5}{r}}{5 r-5} & =\frac{2 d}{3 d} \\
3\left(5-\frac{5}{r}\right) & =2(5 r-5) \\
3-\frac{3}{r} & =2 r-2 \\
0 & =2 r^{2}-5 r+3 \\
0 & =(2 r-3)(r-1)
\end{aligned}
$$

The solution $r=1$ gives the sequence $5,5,5$, but we were told that the three numbers are distinct and so we discard this solution. The solution $r=\frac{3}{2}$ gives the sequence $\frac{10}{3}, 5, \frac{15}{2}$.

Solution 2

Since the product of the three numbers is non-zero, so is r, the common ratio of the geometric sequence. We let the numbers be $\frac{a}{r}$, a, and $a r$. Thus, $a^{3}=125$ and so $a=5$. We know that the middle term, 5 , is the third term of an arithmetic sequence.

Let d be the common difference of this arithmetic sequence. The first term is the first term of the arithmetic sequence and therefore, it is $5-2 d$. The third term is the sixth term of the arithmetic sequence and therefore, it is $5+3 d$. The product of these three terms is 125 and so $(5-2 d) 5(5+3 d)=125$. Dividing both sides by 5 and simplifying gives $-6 d^{2}+5 d=0$. Therefore, $d=0$ or $d=\frac{5}{6}$. If $d=0$, then the sequence is $5,5,5$, but we were told that the three numbers are distinct and so we discard this solution. If $d=\frac{5}{6}$, the sequence is $\frac{10}{3}, 5, \frac{15}{2}$.
5. Our sum is

$$
\begin{aligned}
\sum_{k=1}^{N} \frac{k^{2}+k}{2} & =\frac{\sum_{k=1}^{N} k^{2}+\sum_{k=1}^{N} k}{2} \\
& =\frac{\frac{N(N+1)(2 N+1)}{6}+\frac{N(N+1)}{2}}{2} \\
& =\frac{N(N+1)}{4}\left(\frac{2 N+1}{3}+1\right) \\
& =\frac{N(N+1)}{4}\left(\frac{2 N+4}{3}\right) \\
& =\frac{N(N+1)(N+2)}{6}
\end{aligned}
$$

Taking $N=200$ we get

$$
\begin{aligned}
\sum_{k=1}^{200} \frac{k^{2}+k}{2} & =\frac{200 \cdot 201 \cdot 202}{6} \\
& =1353400
\end{aligned}
$$

6. Represent the angles as $a-2 d, a-d, a, a+d$ and $a+2 d$. The sum of these values is 540°. Therefore, $5 a=540^{\circ}$ and so $a=108^{\circ}$. So either $a-d=90^{\circ}$ or $a-2 d=90^{\circ}$. So the largest angle is either 126° or 144°.
7. We let the four positive integers be represented by $k, k r, k r^{2}$ and $k r^{3}$. Then

$$
\begin{align*}
k r+k r^{2} & =30 \tag{1}\\
k+k r^{3} & =35 \tag{2}
\end{align*}
$$

Dividing (2) by (1) gives

$$
\begin{aligned}
\frac{k+k r^{3}}{k r+k r^{2}} & =\frac{35}{30} \\
\frac{1+r^{3}}{r+r^{2}} & =\frac{7}{6} \quad\left(k \neq 0 \text { since } k r+k r^{2}=30\right) \\
6 r^{3}-7 r^{2}-7 r+6 & =0
\end{aligned}
$$

By inspection, we find that $r=-1$ is a solution. Using the factor theorem and long division, we arrive at

$$
(r+1)(2 r-3)(3 r-2)=0
$$

So $r=-1, \frac{2}{3}$ or $\frac{3}{2}$
Using $r=-1$, equation (2) gives $0 k=35$, which is impossible. (It would also violate the condition $a<b<c<d$.)
Using $r=\frac{2}{3}$ in (1), we find $k=27$.
Using $r=\frac{3}{2}$ in (1) we find $k=8$.
Both of these value give the same list of numbers, and when arranged in increasing order they are $(a, b, c, d)=(8,12,18,27)$.
8. The sequence is arithmetic if and only if $t_{1}+t_{3}=2 t_{2}$. There are 27 equally likely ways to pick three numbers, of which only five lead to such a sequence:

$$
\begin{aligned}
& 1,4,7 \\
& 1,5,9 \\
& 2,5,8 \\
& 3,5,7 \\
& 3,6,9
\end{aligned}
$$

So the probability is $\frac{5}{27}$.

9. Solution 1

Since there are an odd number of integers, the average of the integers is the middle integer.
Therefore, the middle integer is $\frac{500}{25}=20$. Thus, the smallest integer is 8 .

Solution 2

The common difference is 1 and the number of terms is 25 . Therefore, using the sum of an arithmetic sequence we get $500=\frac{25}{2}(a+(a+24))$, which simplifies to $40=2 a+24$. Therefore, $a=8$,
10. The common difference is $d=2$, the first term is $a=-1994$ and so

$$
-1994+2(n-1)=-1994
$$

Solving for n gives $n=1995$.
11. (a) $S_{1}=t_{1}=3^{1}-1=2$.
$S_{2}=t_{1}+t_{2}=3^{2}-1=8$ and so $t_{2}=8-2=6$.
$S_{3}=t_{1}+t_{2}+t_{3}=3^{3}-1=26$ and so $t_{3}=26-8=18$.
(b)

$$
\begin{aligned}
\frac{t_{n+1}}{t_{n}} & =\frac{S_{n+1}-S_{n}}{S_{n}-S_{n-1}} \\
& =\frac{\left(3^{n+1}-1\right)-\left(3^{n}-1\right)}{\left(3^{n}-1\right)-\left(3^{n-1}-1\right)} \\
& =\frac{3^{n} \cdot(3-1)}{3^{n-1} \cdot(3-1)} \\
& =3
\end{aligned}
$$

12. We can see that the nth term of the sequence is $7 n$. The smallest multiple of 7 that is greater than 40 is 42 and the largest multiple of 7 that is less than 28001 is 28000 (We see that $\frac{28001}{7} \approx 4000.1$ and $7 \cdot 4000=28000$.) So $n-1=\frac{28000-(42)}{7}$ and $n=3995$.
13. We know $f(n+1)=f(n)+\frac{1}{3}$ and so the the function evaluated at positive integers gives a sequence that is arithmetic. Its first term is 2 and its common difference is $\frac{1}{3}$. Therefore, $f(100)=2+99\left(\frac{1}{3}\right)=35$.
14. Substituting for x and $y,-p+2 q=r$ so $q-p=r-q$ and we are done!
15. If the common difference is 0 , then the sequence is also a geometric sequence with a common ratio of 1 . In this case, any three terms form a three-term geometric sequence.
Let's consider what happens when $d \neq 0$. For any three-term geometric sequence, x_{1}, x_{2}, x_{3} we have $x_{1} x_{3}=\left(x_{2}\right)^{2}$. So

$$
\begin{aligned}
(a+4 d)(a+15 d) & =(a+8 d)^{2} \\
a^{2}+19 a d+60 d^{2} & =a^{2}+16 a d+64 d^{2} \\
3 a d & =4 d^{2} \\
d & =\frac{3}{4} a \quad(\text { Since } d \neq 0)
\end{aligned}
$$

Thus, the general term is

$$
\begin{aligned}
t_{k} & =a+(k-1) \frac{3}{4} a \\
& =\frac{a}{4}(3 k+1)
\end{aligned}
$$

Therefore,

$$
r=\frac{t_{9}}{t_{5}}=\frac{\frac{a}{4}(3 \cdot 9+1)}{\frac{a}{4}(3 \cdot 5+1)}=\frac{7}{4}
$$

We need to find an infinite number of triples (i, j, k) such that

$$
\frac{t_{j}}{t_{i}}=\frac{t_{k}}{t_{j}}=\frac{7}{4}
$$

which is to say that

$$
\frac{3 j+1}{3 i+1}=\frac{3 k+1}{3 j+1}=\frac{7}{4}
$$

Therefore, $4(3 j+1)=7(3 i+1)$, which implies that $3 j+1$ is a multiple of 7 and $3 i+1$ is a multiple of 4 .
Also, $4(3 k+1)=7(3 j+1)$, which implies that $3 k+1$ is a multiple of 7 and $3 j+1$ is a multiple of 4 . So $3 j+1$ must be a multiple of 28 . Let $3 j+1=28 n$ for some integer n.
We also have that $(3 j+1)^{2}=(3 i+1)(3 k+1)$ and so $(3 i+1)(3 k+1)$ must be a multiple of 28^{2}. So if we make $3 i+1=16 n$ and $3 k+1=49 n$, then we will have satisfied all the conditions.
However, we need to guarantee that i, j and k are positive integers. We note that

$$
\begin{aligned}
3 i+1 & =16 n=3(5 n)+n \\
3 j+1 & =28 n=3(9 n)+n \\
3 k+1 & =49 n=3(16 n)+n
\end{aligned}
$$

So if we choose n such that it is 1 more than a multiple of 3 , then i, j and k will be integers. Therefore, let $n=3 m+1$ for some non-negative integer m and we obtain

$$
\begin{aligned}
& i=\frac{16(3 m+1)-1}{3}=16 m+5 \\
& j=\frac{28(3 m+1)-1}{3}=28 m+9 \\
& k=\frac{49(3 m+1)-1}{3}=49 m+16
\end{aligned}
$$

For each value of m we will obtain a three-term geometric sequence with common ratio $\frac{7}{4}$.
16. The sequence goes $5,3,-2,-5,-3,2,5,3, \ldots$ The sequence repeats in groups of 6 whose sum is 0 . So the sum of 32 terms is $5+3=8$.
17.

$$
\begin{aligned}
t_{1998} & =\frac{1995}{1997} \times t_{1996} \\
& =\frac{1995}{1997} \times \frac{1997}{1995} \times t_{1994} \\
& =\frac{1995}{1997} \times \frac{1997}{1995} \times \frac{1995}{1993} \times \cdots \times \frac{3}{5} \times \frac{1}{3} \times t_{2} \\
& =-\frac{1}{1997}
\end{aligned}
$$

18. The first term is $t_{1}=555-7=548$ and the common difference is -7 . Therefore, the sum is $S_{n}=\frac{n}{2}[2(548)+(n-1)(-7)]$. Thus, the sum is negative when $1096+(n-1)(-7)<0$. Solving the equality $1096-7 n+7=0$ we obtain $n \approx 157.6$. We note that $S_{157}=314$ and $S_{158}=-237$ Therefore, the smallest value of n for which S_{n} is negative is $n=158$.
