Solutions

1. Subtract one equation from the other and factor the resulting expression.

\[xy + y - 8 - 8x = 0 \]
\[x(y - 8) + y - 8 = 0 \]
\[(x + 1)(y - 8) = 0 \]

There are solutions when \(x = -1 \) and when \(y = 8 \). If \(x = -1 \) then \(y = -9 \). If \(y = 8 \) then \(x = 4 \pm 2\sqrt{2} \). The solutions are \((-1, -9)\) and \((4 \pm 2\sqrt{2}, 8)\).

2. We are asked for the \(x \) value of the midpoint of zeros, which is the \(x \) value of the vertex. The equation is written in vertex form already, having an \(x \) value of 1.

Alternately Solution: Find the intercepts:

\[(x - 1)^2 - 4 = 0 \]
\[(x - 1)^2 = 4 \]
\[x = 1 \pm 2 \]

Thus \(x = 3 \) or \(-1\). Thus \(a = \frac{-1 + 3}{2} = 1 \).

3. (a) Consider \(a = 0 \) and \(a = 1 \), and find the intersection point of the resulting equations, \(y = x^2 \) and \(y = x^2 + 2x + 1 \). Then \(0 = 2x + 1 \) and the intersection point is \((-\frac{1}{2}, \frac{1}{4})\). Now substitute this point into the general equation to show that this point is on all the parabolas, since

\[y = x^2 + 2ax + a \]
\[= \frac{1}{4} + 2a \cdot -\frac{1}{2} + a \]
\[= \frac{1}{4} \]

(b) Now \(y = x^2 + 2ax + a = (x + a)^2 + a - a^2 \) so the vertex is at \((-a, a - a^2)\). If we represent the coordinates of the vertex by \((p, q)\) we have \(p = -a \) and \(q = a - a^2 \) or \(q = -p^2 - p \), the required parabola.

4. (a)
(b) From the graph \(x \geq 0 \).

5. Factoring both equations we arrive at:

\[
\begin{align*}
 p(1 + r + r^2) &= 26 \quad (1) \\
 p^2 r(1 + r + r^2) &= 156 \quad (2)
\end{align*}
\]

Dividing (2) by (1) gives \(pr = 6 \). Substituting this relation back into (1) we get

\[
\begin{align*}
 6 + 6r &= 26 \\
 6 - 20r + 6r^2 &= 0 \\
 3r^2 - 10r + 3 &= 0 \\
 (3r - 1)(r - 3) &= 0
\end{align*}
\]

Hence \((r, p) = (3, 2) \) or \((\frac{1}{3}, 18) \).

6. We assume, on the contrary, that the coefficients are in geometric sequence. Then \(\frac{b}{a} = \frac{c}{b} \) or \(b^2 = ac \). But now the discriminant \(b^2 - 4ac = -3b^2 < 0 \) so that the roots are not real. Thus we have a contradiction of the condition set out in the statement of the problem and our assumption is false.

7. Let \(r \) and \(s \) be the integer roots. The equation can be written as

\[
a(x - r)(x - s) = a(x^2 - (r + s)x + rs)
\]

\[
= ax^2 - a(r + s)x + ars
\]

\[
= ax^2 + bx + c
\]

with \(b = -a(r + s) \) and \(c = ars \). Since \(a, b, c \) are in arithmetic sequence, we have

\[
\begin{align*}
 c - b &= b - a \\
 a + c - 2b &= 0 \\
 a + ars + 2a(r + s) &= 0 \\
 1 + rs + 2(r + s) &= 0 \quad \text{we can divide by } a \text{ since } a \neq 0 \\
 (r + 2)(s + 2) &= 3
\end{align*}
\]

Since there are only 2 integer factorings of 3 we have \(\{r, s\} = \{1, -1\} \) or \(\{-3, -5\} \).

8. Solution 1

Multiplying out and collecting terms results in \(x^4 - 6x^3 + 8x^2 + 2x - 1 = 0 \). We look for a factoring with integer coefficients, using the fact that the first and last coefficients are 1. So

\[
x^4 - 6x^3 + 8x^2 + 2x - 1 = (x^2 + ax + 1)(x^2 + bx - 1)
\]

where \(a \) and \(b \) are undetermined coefficients. However multiplication now gives \(a + b = -6 \) and \(-a + b = 2 \) and \(ab = 8 \). Since all 3 equations are satisfied by \(a = -4 \) and \(b = -2 \), we have factored the original expression as

\[
x^4 - 6x^3 + 8x^2 + 2x - 1 = (x^2 - 4x + 1)(x^2 - 2x - 1)
\]

Factoring these two quadratics gives roots of \(x = 2 \pm \sqrt{3} \) and \(x = 1 \pm \sqrt{2} \).
Solution 2
We observe that the original equation is of the form \(f(f(x)) = x \) where \(f(x) = x^2 - 3x + 1 \). Now if we can find \(x \) such that \(f(x) = x \) then \(f(f(x)) = x \). So we solve \(f(x) = x^2 - 3x + 1 = x \) which gives the first factor \(x^2 - 4x + 1 \) above. With polynomial division, we can then determine that
\[
x^4 - 6x^3 + 8x^2 + 2x - 1 = (x^2 - 4x + 1)(x^2 - 2x - 1)
\]
and continue as in Solution 1.

9. The vertex has \(x = 2 \) and \(y = -16 \) so \(A = (2, -16) \). When \(y = 0 \) we get intercepts at \(-2\) and \(6\). The larger value is \(6\), so \(B = (6, 0) \). Therefore we want the line through \((2, -16)\) and \((6, 0)\) which is
\[
4x - y - 24 = 0.
\]

10. Solution 1
Multiplying gives
\[
x^2 - (b + c)x + bc = a^2 - (b + c)a + bc
\]
\[
0 = x^2 - (b + c)x + a(b + c - a)
\]
\[
x = \frac{b + c \pm \sqrt{(b + c)^2 - 4a(b + c - a)}}{2}
\]
\[
= \frac{b + c \pm \sqrt{(b + c - 2a)^2}}{2}
\]
\[
= a \text{ OR } b + c - a
\]

Solution 2 Observe that \(x = a \) is one solution. Rearrange as above to get \(x^2 - (b + c)x + a(b + c - a) = 0 \).
Using the sum/product of roots, the other solution is \(x = b + c - a \).

11. Since \(x = -2 \) is a solution of \(x^3 - 7x - 6 \), thus \(x + 2 \) is a factor. Factor as
\[
x^3 - 7x - 6 = (x + 2)(x^2 - 2x - 3) = (x + 2)(x + 1)(x - 3)
\]
so the roots are \(-2, -1\) and \(3\).

12. Let the roots be \(r \) and \(s \). By the sum and product rule,
\[
r + s = \frac{-4(a - 2)}{4} = 2 - a
\]
\[
rs = \frac{-8a^2 + 14a + 31}{4} = -2a^2 + \frac{7}{2}a + \frac{31}{4}
\]
Then
\[
r^2 + s^2 = (r + s)^2 - 2rs
\]
\[
= (2 - a)^2 - 2(-2a^2 + \frac{7}{2}a + \frac{31}{4})
\]
\[
= 4 - 4a + a^2 + 4a^2 - 7a - \frac{31}{2}
\]
\[
= 5a^2 - 11a - \frac{23}{2}.
\]
It appears that the minimum value should be at the vertex of the parabola \(f(a) = 5a^2 - 11a - \frac{23}{2} \), that is at \(a = \frac{11}{10} \) (found by completing the square). But we have ignored the condition that the roots are real. The discriminant of the original equation is

\[
B^2 - 4AC = [4(a - 2)]^2 - 4(4)(-8a^2 + 14a + 31) = 16(a^2 - 4a + 4) + 128a^2 - 224a - 496 = 144a^2 - 288a - 432 = 144(a - 3)(a + 1).
\]

Thus we have real roots only when \(a \geq 3 \) or \(a \leq -1 \). Therefore \(a = \frac{11}{10} \) cannot be our final answer, since the roots are not real for this value. However \(f(a) = 5a^2 - 11a - \frac{23}{2} \) is a parabola opening up and is symmetrical about its axis of symmetry \(a = \frac{11}{10} \). So we move to the nearest value of \(a \) to the axis of symmetry that gives real roots, which is \(a = 3 \).

13. Let \(g(2) = k \). Since \(f \) and \(g \) are inverse functions, thus \(f(k) = 2 \). We need to solve

\[
\frac{3k - 7}{k + 1} = 2
\]

\[
3k - 7 = 2(k + 1)
\]

\[
k = 9
\]

Thus \(g(2) = 9 \).

14. Write

\[
y = -2x^2 - 4ax + k
\]

\[
= -2(x^2 + 2ax + \frac{k}{2})
\]

\[
= -2(x + a)^2 + k + 2a^2
\]

The vertex is at \((-a,k + 2a^2)\) or \((-2,7)\) and we can solve for \(a = 2 \) and \(k = -1 \).

15. Using sum and product of roots we have the 4 equations:

\[
a + b = -c
da = d
\]

\[
c + d = -a\cd = b.
\]

Therefore

\[
-(c + d) + cd = -c
\]

\[
= cd - d = 0
\]

\[
d(c - 1) = 0
\]

But none of \(a, b, c \) or \(d \) are zero, so \(c = 1 \). Then we get \(d = b, a = 1 \) and \(d = b = -2 \). Thus \(a + b + c + d = -2 \).
16. The most common way to do this problem uses calculus. However we make the substitution $z = x - 4$. To get y in terms of z, try

$$y = x^2 - 2x - 3$$
$$= (x - 4)^2 + 6x - 19$$
$$= (x - 4)^2 + 6(x - 4) + 5$$
$$= z^2 + 6z + 5$$

The value we want to minimize is then

$$\frac{y - 4}{(x - 4)^2} = \frac{z^2 + 6z + 1}{z^2} = 1 + \frac{6}{z} + \frac{1}{z^2}.$$ If we now let $u = \frac{1}{z}$, we have the up-opening parabola $1 + 6u + u^2$ which has its minimum at $u = -3$ with minimum value of -8. Note that since x can assume any real value except 4, z and u will assume all real values except zero. Thus the minimum value of this expression is -8.