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1. (a)  If one root of x?+2x—c=01is x= 1, what is the value of ¢?

Solution 1
If x =1, by substituting, ¢ =3.

Solution 2
By division,
x+3

x—lix2+2x—c

2
X —X

3x-c

3x-3

—c+3
If the remainder is zero, —c+3=0

c=3.

(b) If 22*~* =8, whatis the value of x?

Solution
22x — 4 — 23

Therefore, 2x -4 =3

X =

SIS

(¢) Two perpendicular lines with x-intercepts —2 and 8 intersect at (0, »). Determine all values of

b.
Solution 1
If the lines are perpendicular their slopes are negative y
reciprocals. \
Thus, i X é =-1
-8 2 0, b)
b* =16, b==14. /\
(-2,0) 8,0
Solution 2

Using Pythagoras, [(b—0)” +(0-8)*]+[(6-0)> +(0+2)*| =10
2b* =32, b==4.

Solution 3
The vertices of the triangle represents three points on a circle with (-2, 0) and (8, 0) being the
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3.

(a)

(b)

(c)

(a)

coordinates of the end points of the diameter. This circle has centre C(3,0) and r=5. The

equation for this circle is (x — 3)2 + y2 =25 and if we want to find the y-intercepts we let x =0
which gives b=14.

The vertex of y=(x— 1)2 + b has coordinates (1,3). What is the y-intercept of this parabola?

Solution
The vertex of parabola is (1, b).

Therefore, b = 3.

The required equation is now y = (x —1)% +3.
For the y-intercept, let x=0.

Thus, y,, =(0-1)* +3=4.

What is the area of A ABC with vertices A(=3,1), B(5,1) and C(8,7)?

Solution
Drawing the diagram gives a triangle with a height of 6 and a base of 8 units.
The triangle has an area of 24 square units.

In the diagram, the line y=x+1 intersects the y
parabola y= x*-3x-4 at the points P and Q.
Determine the coordinates of P and Q.

N
Solution

Consider the system of equations y=x+1, y= x?-3x—4.
Comparison gives x +1= x> —3x-4
xX*—4x-5=0
(x=5)(x+1)=0.
Therefore x =5 or x=-1.

If x=5,y=6andif x=-1, y=0.
The required coordinates are P(—1,0) and Q(5, 6).

The graph of y =m” passes through the points (2, 5) and (5, n). What is the value of mn ?
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(b)

4. (a)

(b)

Solution
Since (2,5)ison y=m", 5= m?.

Since (5, ) is on y=m", n=m".

So mn= m(m5)=m6 :(m2)3 =5°=125.

Jane bought 100 shares of stock at $10.00 per share. When the shares increased to
a value of $N each, she made a charitable donation of all the shares to the Euclid
Foundation. She received a tax refund of 60% on the total value of her donation.
However, she had to pay a tax of 20% on the increase in the value of the stock.
Determine the value of N if the difference between her tax refund and the tax paid
was $1000.

Solution
Jane’s charitable donation to the Euclid Foundation was 100N dollars.
Her tax refund was 60% of 100N or 60N dollars.
The increase in the value of her stock was 100(N —10) or (100N —1000) dollars.
Jane’s tax payment was 20% of 100N —1000 or 20N —200.
From the given, 60N — (20N —200) = 1000
Upon simplification, 40N = 800
N = 20.
Therefore the value of N was 20.

Consider the sequence #; =1, t, =—1 and ¢, = (n—_?)tn _, where n=3. What is the value of
n —
f998?

Solution 1
Calculating some terms, t; =1, 1, =1, 1, =0, t, = %1, ts=0, 1= %1 etc.
-1

By pattern recognition, #;99g = 1997 °

Solution 2
; _ 1995t 1995 y 1993t
1998 = 799711996 = 7997 * 1995 1994

_ 1995 1993 1991 3.1

T 1997 1995 1993 5 32
o
~ 1997

The nth term of an arithmetic sequence is given by #, =555 —"7n.
If §, =t +1t, +... +1,, determine the smallest value of n for which S, <0.
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5. (a)

Solution 1
This is an arithmetic sequence in which a =548 and d =-7.

Therefore, S, = [2(548)+(n—1)(=7)]= [~ 7n+1103].

We now want ~(~7n+1103) <0.

Since n>0, -7n+1103<0

4
n>1577.

Therefore the smallest value of n is 158.

Solution 2

n n
For this series we want, Y <0, or » (555-7k)<0.
k=1 k=1

Rewriting, 5551~ 700+

1110n-Tn*> -Tn <0

0% —1103n >0

1103
or, n>—.
7

The smallest value of n is 158.

Solution 3
We generate the series as 548, 541, 534, ..., 2, -5, ..., =544, - 551.

If we pair the series from front to back the sum of each pair is —3.

Including all the pairs 548 — 551, 541 - 544 and so on there would be 79 pairs which give a
sum of —237.

If the last term, —551, were omitted we would have a positive sum.
Therefore we need all 79 pairs or 158 terms.

A square OABC is drawn with vertices as y

shown. Find the equation of the circle with i

largest area that can be drawn inside the square. B(0, 4)
C(-2,2) A(2,2)

0(0, 0)
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Solution

The square has a side length of 2/2.

The diameter of the inscribed circle is 2+/2 , SO its radius is V2.
The centre of the circle is (0, 2).

The required equation is x* +(y — 2)2 =2o0r x> +y>—4y+2=0.

(b) In the diagram, DC is a diameter of the larger circle centred at
A, and AC is a diameter of the smaller circle centred at B. If
DE is tangent to the smaller circle at F, and DC =12,
determine the length of DE. D

Solution

Join Bto Fand Cto E.

FB1 DE and DFE is atangent .

Since DC is a diameter, £ DEC =90°.
Thus FB| EC.

By Pythagoras, DF = v92_32 =72,
Using similar triangles (or the side splitting theorem)

we have,

OR
DE_DC EC_12
DF DB FB 9
DE 4 4
—=— EC=_FB
672 3 3
DE =82 or /128 EC=4

By Pythagoras, DE =8+/2 or /128.

6. (a) Inthe grid, each small equilateral triangle has side length 1. If
the vertices of AWAT are themselves vertices of small
equilateral triangles, what is the area of AWAT?
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(b)

Solution 1 A
AT? =17 +4% —2(1)(4)cos 60° =13 1
Since AWAT is an equilateral triangle with a side of /60°

length /13, its height will be %(«/ﬁ ) . The area of

AWAT is thus, ;[(f)(«/ﬁ)]\/l— = ?«/g . It is also possible to use the formula for the area

of a triangle,

Area = %ab sin ¢. Since the triangle is equilateral, area of AWAT = J3AT? = 13;6 .
Solution 2

Since the small triangles have sides 1, they have a

height of g

Consider rectangle PQTU .
Then

| AWAT | = | PQTU |- | AAPW | —| AWQT | -| ATUA |
= (PQ)(QT) — 5 (AP)(PW) — - (WQX(QT) - 5 (TU)(UA)

= (35)(243)- 1

T2

)(2.5) — 1 (243)- ;(3.5)(*/23)

I~ 1 J/_
_ 73— 543
4
1343
4
In AABC, Mis apointon BC such that BM =5 and A
MC=6. If AM =3 and AB=7, determine the exact 7
value of AC. 3
B 5 M 6 C
Solution
32_72-5% 13

From AABM,cos<B=———=—.
-2(7)(5) 14

From AABC, AC? =72 +112 ~2(7)(11)(13) = 27.

Therefore, AC =+/27.
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7. (a) The function f(x) has period 4. The graph of one 3’\
period of y= f(x) is shown in the diagram. Sketch
the graph of y=%[f(x—l)+f(x+3)],f0r -2<x<2. 2
-2 0 >
=3 1 [ 2 3
-2
Solution 1
@ f(x)  flx=1)  f(x+3) y
\
S =1+ f(x+3)] (
2 0 2 2 2 2
-1 -2 0 0 0
0 0 -2 -2 -2 —2\__0F o
1 2 0 0 0 -3 -1 1 2 3
2 0 2 2 2
)

Now plot the points and join them with straight line segments.

Solution 2

Since f(x) has period 4, f(x+3)= f(x-1).

Therefore, y = [f(x=1)+ f(x+3)]= [ f(x=1)+ f(x=1)] = f(x-1).

The required graph is that of y = f(x —1) which is formed by shifting the given graph I unit to
the right.

(b) If x and y are real numbers, determine all solutions (x, y) of the system of equations
X% - xy+8=0
x?—8x+ y=0.

Solution 1
Subtracting,

xz—xy+8:O

x> —8x+y=0

—xy+8x+8—y=0

8(1+x)—y(1+x)=0
(8-y)1+x)=0

y=8 or x=-1
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8. (a)

(b)

If y =8, both equations become x> -8x+8=0 , x=4% 242.
If x =—1 both equations become y+9=0, y=-9.
The solutions are (-1, -9), (4 +242, 8) and (4 —22, 8) )

Solution 2
2

It xz—xy+8:O,y=x +8.
X

And x? —8x+y=0 implies y=8x — x°.

2
x“+8
=8x—x°

Equating,

or, x> = 7x* +8=0.
By inspection, x =—1 is a root.
By division, x> —7x* +8=(x + 1)()62 —8x+ 8).

As before, the solutions are (-1, -9), (4 +24/2, 8) )

In the graph, the parabola y = x? has been translated to
the position shown. Prove that de = f.

> <

(_d,O)\ \/ o
(0, - f)
Solution

Since the given graph is congruent to y = x? and has x-intercepts —d and e, its general form is
y=(x+d)(x—e).

To find the y-intercept, let x = 0. Therefore y-intercept = —de.

We are given that the y-interceptis — f .

Therefore —f =—de or f=de.

In quadrilateral KWAD, the midpoints of KW and AD y

are M and N respectively. If MN :%(AW+ DK),

prove that WA is parallel to KD. 2 4
M N
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Solution 1
Establish a coordinate system with K(0, 0), D(2a, 0) on y
the x-axes. Let Wbe (2b,2¢) and A be (2d, 2e). /
Thus M is (b,c) and Nis (a+d, e). W(2b,2c)  A(2d, 2¢)
KD has slope 0 and slope WA = e
1 d-b M(b, c) N(a +d, e)

Since MN = (AW + DK)

Va+d—b)* +(e-c) K(0,0) D(2a,0)

= ;(Za +12d - 2b)* +(2¢ - 2¢)? )

_ ;(2(1 +2)(d =) + (e~ c)z)
Squaring both sides gives,
(a+d-b)* +(e-c)* =d* +2a\/(d—b)2 +(e—c)? +(d—b)* +(e—c)*

a® +2a(d - b)+(d - b)* :az+2a\;“s(d—b)2+(e—c)2 +(d - b)?

Simplifying and dividing by 2a we have, d —b =+ (d — b)* +(e—c)* .

Squaring, (d —b)* =(d - b)* +(e—c)*.
Therefore (e—c)* =0 or e=c.
Since e = c then slope of WA is 0 and KD||AW.

Solution 2 y
Join A to K and call P the mid-point of AK . A
Join M to P, Nto P and M to N. W(2b,2c)  A(2d, 2e)
In AKAW, P and M are the mid-points of KA and KW.

Therefore, MP = % WA . M(b, c) N(a+d, e)

Similarly in AKAD, PN = KD. > 5

K(0, 0) D(2a, 0)

Therefore MP+ PN = MN .

As aresult M, P and N cannot form the vertices of a triangle but must form a straight line.
So if MPN is a straight line with MP||WA and PN|| KD then WA|| KD as required.

Solution 3

We are given that AN = ND and WM = MK .

Using vectors,

(1) MN=MW+WA+AN (from quad. MWAN)
(2) MN=MK+KD+DN (from quad. KMND)
It is also possible to write, MN = -MW + KD — AN ,
(3) (This comes from taking statement (2) and making
appropriate substitutions.)

10
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If we add (1) and (3) we find, 2MN = WA + KD.

But it is given that 2‘W‘:‘WV‘+‘E€‘

From these two previous statements, MN must be parallel to WA and KD otherwise
2| MN|<| AW |+| DK |

Therefore, WA|| KD.

9.  Consider the first 2n natural numbers. Pair off the numbers, as shown, and multiply the two
members of each pair. Prove that there is no value of n for which two of the n products are equal.

1 2 3 n=-2) m-1) n m+1) m+2) Mm+3)---2n-1) 2m
| ' — ' |

Solution 1
The sequence is 1(2n), 2(2n-1),3(2n-2), ... k2n-k+1), ..., p2n-p+1), ... n(n+1).

In essence we are asking the question, is it possible that k(2n—k+1) = p(2n— p +1) where p and k

are both less than or equal to n?’
k(2n—k+1)=p(2n-p+1) (supposing them to be equal)

2nk — k> +k = 2np—p2 +p
p2 —k? +2nk-2np+k—-p=0
(p—k)(p+k)+2n(k - p)+(k-p)=0
(p-k)(p+k)-2n-1]=0
(p—k)p+k-2n-1)=0
Since p and k are both less than or equal to n, it follows p+k —2n—1#0. Therefore p = k and they
represent the same pair. Thus the required is proven.

Solution 2
The products are 1(2n+1-1), 2(2n+1-2), 3(2n+1-3),..., n(2n+1-n).
Consider the function, y=x(2n+1-x)=—x*+(2n+1)x = f(x).
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The graph of this function is a parabola, opening down, with y

. _ 1

1ts vertex at x—n+§. *
The products are the y-coordinates of the points on the
parabola corresponding to x =1, 2, 3, ..., n. Since all the
points are to the left of the vertex, no two have the same  y-

coordinate.

Thus the products are distinct. * \ > X
f X=n+ %

Solution 3

The sum of these numbers is 2n2n+1) or n(2n+1).

n(2n+1) 1
——=n+—.
2n
The 2n numbers can be rewritten as,
1 (Zn—l) 1 3 1 1 I 1 1 3 1 (211—1)
n+—-— Nt ——— n+———,n+t—+—,n+—+—,,n+—+ :
2 2 2 2 2 2 2 2 2 2 2
The product pairs, starting from the middle and working outward are

Their average is

_ 12 1
_ 12 9

2 2
ne(rs) (5
2 2

2 2
Each of the numbers ( ) is distinct for k =1, 2, 3, ..., n and hence no terms of P, are equal.

Solution 4

The sequence is 1(2n), 2(2n—1),3(2n-2), ..., n[2n - (n-1)].

This sequence has exactly n terms.

When the kth term is subtracted from the (k + 1)th term the difference is
(k+1)[2n—k]-k[2n—(k-1)]=2(n-k). Since n> k, this is a positive difference.

Therefore each term is greater than the term before, so no two terms are equal.

10. The equations x2+5x+6=0 and x> +5x-6=0 each have integer solutions whereas only one of
the equations in the pair x*+4x+5=0and x> +4x-5=0 has integer solutions.

(a) Show that if x>+ px+qg=0 and X%+ px—q=0 both have integer solutions, then it is

possible to find integers a and b such that p2 =a’+b%. (ie. (a, b, p) is a Pythagorean triple).
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(b) Determine g in terms of a and b.
Solution
(a) We have that X%+ px+q=0 and X%+ px —q =0 both have integer solutions.
_ptypP-4
For x2+px+q=(),itsr00tsare p \‘5 4

(b)

In order that these roots be integers, p2 —44q must be a perfect square.
Therefore, p2 —4q = m? for some positive integer m.

—px\p’+4q
2

Similarly for X%+ px—q =0, it has roots and in order that these roots be

integers p2 + 44q must be a perfect square.
Thus p2 +4qg = n? for some positive integer n.
Adding gives 2p2 =m? +n® (with n>m since n” = p2 +4q
> p2 —4q= mz)
And so p2 = lm2 +ln2 =(n+m)2 +(n_m)2.
2 2 2 2
We note that m and n have the same parity since m” = p* —4¢ = p*(mod 2) and

n? = p? +4q=p*(mod2).

. + - e +
Since 22 and % are positive integers then p2 =a® +b? where a = % and
p="""

2
+ j—
From (a), a:% and b=" 2m orn=a+band m=a-b.
From before, p2 +4qg = n’
4g2 =n2 — p2
q =n —-p
=(a+b)’ —(a2 +b2)
4q =2ab.

Therefore, g = %b.

13



