1. In the diagram, D and E are the midpoints of AB and BC respectively.

(a) Determine an equation of the line passing through the points C and D.
(b) Determine the coordinates of F, the point of intersection of AE and CD.
(c) Determine the area of $\triangle DBC$.
(d) Determine the area of quadrilateral $DBEF$.

2. A set S consists of all two-digit numbers such that:
 • no number contains a digit of 0 or 9, and
 • no number is a multiple of 11.

(a) Determine how many numbers in S have a 3 as their tens digit.
(b) Determine how many numbers in S have an 8 as their ones digit.
(c) Determine how many numbers are in S.
(d) Determine the sum of all the numbers in S.

3. Positive integers (x, y, z) form a Trenti-triple if $3x = 5y = 2z$.

(a) Determine the values of y and z in the Trenti-triple $(50, y, z)$.
(b) Show that for every Trenti-triple (x, y, z), y must be divisible by 6.
(c) Show that for every Trenti-triple (x, y, z), the product xyz must be divisible by 900.
4. Let $F(n)$ represent the number of ways that a positive integer n can be written as the sum of positive odd integers. For example,

- $F(5) = 3$ since

 \[
 5 = 1 + 1 + 1 + 1 + 1 \\
 = 1 + 1 + 3 \\
 = 5
 \]

- $F(6) = 4$ since

 \[
 6 = 1 + 1 + 1 + 1 + 1 + 1 \\
 = 1 + 1 + 1 + 3 \\
 = 3 + 3 \\
 = 1 + 5
 \]

(a) Find $F(8)$ and list all the ways that 8 can be written as the sum of positive odd integers.
(b) Prove that $F(n + 1) > F(n)$ for all integers $n > 3$.
(c) Prove that $F(2n) > 2F(n)$ for all integers $n > 3$.