Math Circles. Group Theory. Problem Set 3.

Diana Carolina Castañeda Santos dccastan@uwaterloo.ca University of Waterloo

April 3, 2019

Problems:

- 1. Determine all the groups of order 4.
- 2. Determine all groups of order 5.
- 3. Draw out the multiplication table of S_3 .

•	id	(132)	(123)	(12)	(13)	(23)
id						
(132)						
(123)						
(12)						
(13)						
(23)						

- 4. We know that D_3 , S_3 and $(\mathbb{Z}_6, +)$ are groups of order 6. Are they isomorphic? are all of them non-isomorphic?
- 5. Is $\{0, 5, -5\}$ a subgroup of $(\mathbb{Z}, +)$?
- 6. Find all the subgroups of S_3 .
- 7. What are the possible orders for a subgroup of $(\mathbb{Z}_{12}, +)$? For each order, can you find a subgroup of that order?
- 8. Prove that the order of an element divides the order of the group.

•	e	R	R^2	R^3	H	V	D	D'
e	e	R	R^2	R^3	Η	V	D	D'
R	R	R^2	R^3	e	D'	D	Η	V
R^2	R^2	R^3	e	R	V	Н	D'	D
R^3	R^3	e	R	R^2	D	D'	V	H
Н	Η	D	V	D'	e	R^2	R	R^3
V	V	D'	Н	D	\mathbb{R}^2	e	R^3	R
D	D	V	D'	Η	R^3	R	e	R^2
D'	D'	Н	D	V	R	R^3	R^2	e

9. Find all the subgroups of D_4 (The group of symmetries of the square). Here is the multiplication table that may help you.

10. Prove that inverses are unique. In other words, prove that if ab = ba = e = ac = ca then c = b.