Math Circles. Group Theory. Problem Set 3.
 Diana Carolina Castañeda Santos
 dccastan@uwaterloo.ca
 University of Waterloo

April 3, 2019

Problems:

1. Determine all the groups of order 4 .
2. Determine all groups of order 5 .
3. Draw out the multiplication table of S_{3}.

\cdot	id	(132)	(123)	(12)	(13)	(23)
id						
(132)						
(123)						
(12)						
(13)						
(23)						

4. We know that D_{3}, S_{3} and $\left(\mathbb{Z}_{6},+\right)$ are groups of order 6 . Are they isomorphic? are all of them non-isomorphic?
5. Is $\{0,5,-5\}$ a subgroup of $(\mathbb{Z},+)$?
6. Find all the subgroups of S_{3}.
7. What are the possible orders for a subgroup of $\left(\mathbb{Z}_{12},+\right)$? For each order, can you find a subgroup of that order?
8. Prove that the order of an element divides the order of the group.
9. Find all the subgroups of D_{4} (The group of symmetries of the square). Here is the multiplication table that may help you.

\cdot	e	R	R^{2}	R^{3}	H	V	D	D^{\prime}
e	e	R	R^{2}	R^{3}	H	V	D	D^{\prime}
R	R	R^{2}	R^{3}	e	D^{\prime}	D	H	V
R^{2}	R^{2}	R^{3}	e	R	V	H	D^{\prime}	D
R^{3}	R^{3}	e	R	R^{2}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	e	R^{2}	R	R^{3}
V	V	D^{\prime}	H	D	R^{2}	e	R^{3}	R
D	D	V	D^{\prime}	H	R^{3}	R	e	R^{2}
D^{\prime}	D^{\prime}	H	D	V	R	R^{3}	R^{2}	e

10. Prove that inverses are unique. In other words, prove that if $a b=b a=e=$ $a c=c a$ then $c=b$.
