Math Circles. Group Theory. Problem Set 2.

Diana Carolina Castañeda Santos
dccastan@uwaterloo.ca
University of Waterloo

March 27, 2019

Problems:

1. Find all the elements of $\left(\mathbb{Z}_{12}^{*}, \cdot\right)$ and draw out the multiplication table for this group.
2. Find all values of x in \mathbb{Z}_{10} that satisfy the equation $3 x+9=1(\bmod 10)$.
3. Does the equation $x^{2}=-1(\bmod 5)$ have solutions in $\left(\mathbb{Z}_{5}^{*}, \cdot\right)$?
4. Determine the order of the following groups:
(a) $\left|D_{5}\right|$.
(b) $\left|\left(\mathbb{Z}_{12},+\right)\right|$.
(c) $\left|\left(\mathbb{Z}_{12}^{*}, \cdot\right)\right|$.
(d) $\left|S_{4}\right|$
(e) $\left|\left(\mathbb{Z}_{p}^{*}, \cdot\right)\right|$ where p is prime.
(f) $\left|S_{n}\right|$ where $n \in \mathbb{N}$
5. Determine the order of the following elements
(a) $|i|$ in \mathcal{Q}_{8}.
(b) $|3|$ in $\left(\mathbb{Z}_{8},+\right)$.
(c) $|3|$ in $\left(\mathbb{Z}_{8}^{*}, \cdot\right)$.
(d) $|a|$ for each a in $\left(\mathbb{Z}_{5}^{*}, \cdot\right)$.
(e) $|H V|$ in D_{4}.
6. Determine all the groups of order 4 .
7. Determine all groups of order 5.
8. Draw out the multiplication table of S_{3}.

\cdot	id	(132)	(123)	(12)	(13)	(23)
id						
(132)						
(123)						
(12)						
(13)						
(23)						

9. We know that D_{3}, S_{3} and $\left(\mathbb{Z}_{6},+\right)$ are groups of order 6 . Are they isomorphic? are all of them non-isomorphic?
10. Draw out the multiplication table of the group of quaternions $\left(\mathcal{Q}_{8}, \cdot\right)$.

\cdot	1	-1	i	$-i$	j	$-j$	k	$-k$
1								
-1								
i								
$-i$								
j								
$-j$								
k								
$-k$								

11. Prove that inverses are unique. In other words, prove that if $a b=b a=e=$ $a c=c a$ then $c=b$.
