Math Circles. Group Theory. Problem Set 2.

Diana Carolina Castañeda Santos dccastan@uwaterloo.ca University of Waterloo

March 27, 2019

Problems:

- 1. Find all the elements of $(\mathbb{Z}_{12}^*, \cdot)$ and draw out the multiplication table for this group.
- 2. Find all values of x in \mathbb{Z}_{10} that satisfy the equation $3x + 9 = 1 \pmod{10}$.
- 3. Does the equation $x^2 = -1 \pmod{5}$ have solutions in (\mathbb{Z}_5^*, \cdot) ?
- 4. Determine the order of the following groups:
 - (a) $|D_5|$.
 - (b) $|(\mathbb{Z}_{12},+)|.$
 - (c) $|(\mathbb{Z}_{12}^*, \cdot)|.$
 - (d) $|S_4|$
 - (e) $|(\mathbb{Z}_p^*, \cdot)|$ where p is prime.
 - (f) $|S_n|$ where $n \in \mathbb{N}$
- 5. Determine the order of the following elements
 - (a) |i| in \mathcal{Q}_8 .
 - (b) |3| in $(\mathbb{Z}_8, +)$.
 - (c) |3| in (\mathbb{Z}_8^*, \cdot) .
 - (d) |a| for each a in (\mathbb{Z}_5^*, \cdot) .
 - (e) |HV| in D_4 .

- 6. Determine all the groups of order 4.
- 7. Determine all groups of order 5.
- 8. Draw out the multiplication table of S_3 .

•	id	(132)	(123)	(12)	(13)	(23)
id						
(132)						
(123)						
(12)						
(13)						
(23)						

- 9. We know that D_3 , S_3 and $(\mathbb{Z}_6, +)$ are groups of order 6. Are they isomorphic? are all of them non-isomorphic?
- 10. Draw out the multiplication table of the group of quaternions (\mathcal{Q}_8, \cdot) .

•	1	-1	i	-i	j	-j	k	-k
1								
-1								
i								
-i								
j								
-j								
k								
-k								

11. Prove that inverses are unique. In other words, prove that if ab = ba = e = ac = ca then c = b.