Math Circles. Group Theory. Solution Set 2.

Diana Carolina Castañeda Santos dccastan@uwaterloo.ca University of Waterloo

March 27, 2019

Solutions:

1. Find all the elements of $(\mathbb{Z}_{12}^*, \cdot)$ and draw out the multiplication table for this group.

The elements in \mathbb{Z}_{12}^* are the units in \mathbb{Z}_{12} . These are the numbers that don't have common divisors with 12. These are 1, 5, 7, and 11. The multiplication table is:

•	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

2. Find all values of x in \mathbb{Z}_{10} that satisfy the equation $3x + 9 = 1 \pmod{10}$.

$$3x + 9 = 1 \pmod{10}$$

 $3x = -8 \pmod{10}$
 $3x = 2 \pmod{10}$

We try all values of x from 0 to 9 and we see that x = 4 is the only solution to this equation.

3. Does the equation $x^2 = -1 \pmod{5}$ have solutions in (\mathbb{Z}_5^*, \cdot) ? We can replace x by the possible values that it could be in \mathbb{Z}_5 .

x	0	1	2	3	4
x^2	0	1	4	4	1

Recall that $-1 = 4 \pmod{5}$. Hence x = 2 and x = 3 are the solutions of the equation.

- 4. Determine the order of the following groups:
 - (a) $|D_5| = 10.$
 - (b) $|(\mathbb{Z}_{12}, +)| = 12.$
 - (c) $|(\mathbb{Z}_{12}^*, \cdot)| = 4.$
 - (d) $|S_4| = 24$
 - (e) $|(\mathbb{Z}_p^*, \cdot)| = p 1$ where p is prime.
 - (f) $|S_n| = n!$ where $n \in \mathbb{N}$

5. Determine the order of the following elements

- (a) |i| = 4 in Q_8 .
- (b) |3| = 8 in $(\mathbb{Z}_8, +)$.
- (c) |3| = 2 in (\mathbb{Z}_8^*, \cdot) .
- (d) |a| for each a in (\mathbb{Z}_5^*, \cdot) .
- |1| = 1|2| = 4|3| = 4|4| = 2

(e) $|HV| = |R^2| = 2$ in D_4 .

6. Determine all the groups of order 4.

There are only two non-isomorphic groups $(\mathbb{Z}_4, +)$ and (\mathbb{Z}_8^*, \cdot) .

7. Determine all groups of order 5.

There is only one group of order 5 which is $(\mathbb{Z}_5, +)$.

•	id	(132)	(123)	(12)	(13)	(23)
id	id	(132)	(123)	(12)	(13)	(23)
(132)	(132)	(123)	id	(23)	(12)	(13)
(123)	(123)	id	(132)	(13)	(23)	(12)
(12)	(12)	(13)	(23)	id	(132)	(123)
(13)	(13)	(23)	(12)	(123)	id	(132)
(23)	(23)	(12)	(13)	(132)	(123)	id

8. Draw out the multiplication table of S_3 .

9. We know that D_3 , S_3 and $(\mathbb{Z}_6, +)$ are groups of order 6. Are they isomorphic? are all of them non-isomorphic?

Since D_3 and S_3 are not abelian, and $(\mathbb{Z}_6, +)$ is abelian, we can say that $(\mathbb{Z}_6, +)$ is not isomorphic to D_3 and S_3 .

To decide if D_3 and S_3 are isomorphic, we look at the multiplication tables. The multiplication table for S_3 was found in problem 8. Also, in the previous lesson we saw that the multiplication table for D_3 is:

•	e	R	R^2	V	D	D'
e	e	R	R^2	V	D	D'
R	R	R^2	e	D'	V	D
R^2	\mathbb{R}^2	e	R	D	D'	V
V	V	D	D'	е	R	R^2
D	D	D'	V	\mathbb{R}^2	е	R
D'	D'	V	D	R	R^2	е

Hence, if we rename: $e \leftrightarrow id$, $R \leftrightarrow (132)$, $R^2 \leftrightarrow (123)$, $V \leftrightarrow (12)$, $D \leftrightarrow (13)$, and $D' \leftrightarrow (23)$. The two tables are the same. Thus D_3 is isomorphic to S_3 .

10. Draw out the multiplication table of the group of quaternions (\mathcal{Q}_8, \cdot) .

•	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	j	-j
-i	-i	i	1	-1	-k	k	-j	j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

11. Prove that inverses are unique. In other words, prove that if ab = ba = e = ac = ca then c = b.

Proof. Since c is an inverse of a, we know ac = e. We can multiply this equation by the left by b and we see that

$$b(ac) = b \cdot e$$

$$(ba)c = b \cdot e$$

$$e \cdot c = b \cdot e$$

$$c = b.$$

The second equation is possible by the associativity property. the third equation is true because b is inverse of a, and the last equation is possible because of the identity property.