Math Circles. Group Theory. Solution Set 2.
 Diana Carolina Castañeda Santos
 dccastan@uwaterloo.ca
 University of Waterloo

March 27, 2019

Solutions:

1. Find all the elements of $\left(\mathbb{Z}_{12}^{*}, \cdot\right)$ and draw out the multiplication table for this group.

The elements in \mathbb{Z}_{12}^{*} are the units in \mathbb{Z}_{12}. These are the numbers that don't have common divisors with 12 . These are $1,5,7$, and 11 . The multiplication table is:

\cdot	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

2. Find all values of x in \mathbb{Z}_{10} that satisfy the equation $3 x+9=1(\bmod 10)$.

$$
\begin{aligned}
3 x+9 & =1(\bmod 10) \\
3 x & =-8(\bmod 10) \\
3 x & =2(\bmod 10)
\end{aligned}
$$

We try all values of x from 0 to 9 and we see that $x=4$ is the only solution to this equation.
3. Does the equation $x^{2}=-1(\bmod 5)$ have solutions in $\left(\mathbb{Z}_{5}^{*}, \cdot\right)$?

We can replace x by the possible values that it could be in \mathbb{Z}_{5}.

x	0	1	2	3	4
x^{2}	0	1	4	4	1

Recall that $-1=4(\bmod 5)$. Hence $x=2$ and $x=3$ are the solutions of the equation.
4. Determine the order of the following groups:
(a) $\left|D_{5}\right|=10$.
(b) $\left|\left(\mathbb{Z}_{12},+\right)\right|=12$.
(c) $\left|\left(\mathbb{Z}_{12}^{*}, \cdot\right)\right|=4$.
(d) $\left|S_{4}\right|=24$
(e) $\left|\left(\mathbb{Z}_{p}^{*}, \cdot\right)\right|=p-1$ where p is prime.
(f) $\left|S_{n}\right|=n$! where $n \in \mathbb{N}$
5. Determine the order of the following elements
(a) $|i|=4$ in \mathcal{Q}_{8}.
(b) $|3|=8$ in $\left(\mathbb{Z}_{8},+\right)$.
(c) $|3|=2$ in $\left(\mathbb{Z}_{8}^{*}, \cdot \cdot\right)$.
(d) $|a|$ for each a in $\left(\mathbb{Z}_{5}^{*}, \cdot\right)$.

$$
\begin{aligned}
|1| & =1 \\
|2| & =4 \\
|3| & =4 \\
|4| & =2
\end{aligned}
$$

(e) $|H V|=\left|R^{2}\right|=2$ in D_{4}.
6. Determine all the groups of order 4 .

There are only two non-isomorphic groups $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{8}^{*}, \cdot\right)$.
7. Determine all groups of order 5.

There is only one group of order 5 which is $\left(\mathbb{Z}_{5},+\right)$.
8. Draw out the multiplication table of S_{3}.

\cdot	id	(132)	(123)	(12)	(13)	(23)
id	id	(132)	(123)	(12)	(13)	(23)
(132)	(132)	(123)	id	(23)	(12)	(13)
(123)	(123)	id	(132)	(13)	(23)	(12)
(12)	(12)	(13)	(23)	id	(132)	(123)
(13)	(13)	(23)	(12)	(123)	id	(132)
(23)	(23)	(12)	(13)	(132)	(123)	id

9. We know that D_{3}, S_{3} and $\left(\mathbb{Z}_{6},+\right)$ are groups of order 6 . Are they isomorphic? are all of them non-isomorphic?
Since D_{3} and S_{3} are not abelian, and $\left(\mathbb{Z}_{6},+\right)$ is abelian, we can say that $\left(\mathbb{Z}_{6},+\right)$ is not isomorphic to D_{3} and S_{3}.

To decide if D_{3} and S_{3} are isomorphic, we look at the multiplication tables. The multiplication table for S_{3} was found in problem 8. Also, in the previous lesson we saw that the multiplication table for D_{3} is:

\cdot	e	R	R^{2}	V	D	D^{\prime}
e	e	R	R^{2}	V	D	D^{\prime}
R	R	R^{2}	e	D^{\prime}	V	D
R^{2}	R^{2}	e	R	D	D^{\prime}	V
V	V	D	D^{\prime}	e	R	R^{2}
D	D	D^{\prime}	V	R^{2}	e	R
D^{\prime}	D^{\prime}	V	D	R	R^{2}	e

Hence, if we rename: $e \leftrightarrow \mathrm{id}, R \leftrightarrow(132), R^{2} \leftrightarrow(123), V \leftrightarrow(12), D \leftrightarrow$ (13), and $D^{\prime} \leftrightarrow(23)$. The two tables are the same. Thus D_{3} is isomorphic to S_{3}.
10. Draw out the multiplication table of the group of quaternions $\left(\mathcal{Q}_{8}, \cdot\right)$.

\cdot	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	j	$-j$
$-i$	$-i$	i	1	-1	$-k$	k	$-j$	j
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

11. Prove that inverses are unique. In other words, prove that if $a b=b a=e=$ $a c=c a$ then $c=b$.

Proof. Since c is an inverse of a, we know $a c=e$. We can multiply this equation by the left by b and we see that

$$
\begin{aligned}
b(a c) & =b \cdot e \\
(b a) c & =b \cdot e \\
e \cdot c & =b \cdot e \\
c & =b .
\end{aligned}
$$

The second equation is possible by the associativity property. the third equation is true because b is inverse of a, and the last equation is possible because of the identity property.

