wnensive
WATERLOO
Faculty of Mathematics
Waterloo, Ontario N2L 3G1

Centre for Education in
Mathematics and Computing

Grade 7/8 Math Circles
October 8/9/10 2019
The Math Circles with Triangles Solutions

Exercises:

1.1 Which pairs of triangles can we conclude are congruent based on the criteria? Note that triangles are not drawn to scale.

No, 2 matching sides does not meet criteria.

Yes, Angle-Angle-Side.

Yes, Side-Angle-Side.

No, 3 matching angles does not meet cirteria. Equilateral triangles can be different sizes for example.

Yes, Side-Side-Side.

No, Side-Side-Angle not valid criteria.
1.2 Is Side-Side-Angle enough to show two triangles are congruent? (Side-Side-Angle indicates we know two pairs of corresponding sides are equal as well as a pair of corresponding angles that is not between the sides.)

There are cases where multiple triangles can be formed if the remaining side and two angles are free to change in this criteria.

In the figure above we see an example of how we can form two non congruent triangles $\triangle A B C$ and $\triangle A B D$ that still meet this criteria.

Examples:

1.3 With the knowledge that $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar triangles what are the missing side-lengths FD and DE?

We know all the sides of $\triangle A B C$ and want to find the missing sides on $\triangle D E F$. Corresponding sides have a scale factor between them that we can find with the pair of corresponding sides BC and EF.

Scale Factor $=\frac{E F}{B C}=\frac{8}{4}=2$
Therefore $\triangle D E F$ has corresponding sides twice as large as $\triangle A B C$.

$$
\begin{gathered}
F D=2 \times A C=2 \times 2=4 \\
D E=2 \times A B=2 \times 6=12
\end{gathered}
$$

1.4 $\triangle A C E$ and $\triangle D O G$ are similar. Find the missing side-lengths.

Using the pair of corresponding sides OG and CE we can find the scale factor between the two triangles. Scale Factor $=\frac{C E}{O G}=\frac{7.5}{5}=1.5$

The sides on $\triangle A C E$ are scaled 1.5 or $3 / 2$ times larger than $\triangle D O G$

We need to find missing sides AE and DO. Using the scale factor we know AE is 1.5 times larger than corresponding side DG and side DO is 1.5 times larger than corresponding side AE.

$$
\begin{gathered}
A E=1.5 \times D G=1.5 \times 8=12 \\
D O=\frac{A C}{1.5}=\frac{9}{1.5}=6
\end{gathered}
$$

1.5 Can we say that $\triangle W V X$ and $\triangle X Y Z$ similar? Explain. If $\mathrm{VX}=16$ and $\mathrm{XW}=20$. Find the missing side-lengths.

The two triangles are similar as the two triangles share the same angles. (60,90, and both triangles share $\angle X$)

Same as before we must find the scale factor between $\triangle V W X$ and $\triangle X Y Z$. Using the pair of corresponding sides WV and YZ:

$$
\text { Scale Factor }=\frac{W V}{Y Z}=\frac{12}{6}=2
$$

The sides on $\triangle W V X$ are scaled 2 times larger than $\triangle X Y Z$

Using the scale factor we can find the missing sidelengths ZX and YX.

$$
\begin{gathered}
Y X=\frac{X W}{2}=\frac{20}{2}=10 \\
Z X=\frac{V X}{2}=\frac{16}{2}=8
\end{gathered}
$$

1.6 Are all similar triangles congruent? Are all congruent triangles similar?

All congruent triangles are similar (have three equal corresponding equals) but not all similar triangles are congruent (different side lengths.)

Angles Practice:

How can we solve for θ in the figure?
θ and 45° are supplementary angles. Thus we can say that: $\theta+45^{\circ}=180^{\circ}$

If θ and 45° add to 180° then subtracting 45° from 180° will leave us with just our angle θ
$\theta+45^{\circ}-45^{\circ}=180^{\circ}-45^{\circ}$
$\theta=180^{\circ}-45^{\circ}=135^{\circ}$

Angles Examples:

2.1 Find the missing angles β, δ and α in the figure.
Can identify the supplementary angles in the figure.
β and 67° are supplemental angles.
Thus
$\beta+67^{\circ}=180^{\circ}$
$\beta=180^{\circ}-67^{\circ}$
$\beta=113^{\circ}$
67° and α are also supplementary. Could show that $\alpha=113^{\circ}$ the same way as above.
δ is supplementary with β and α
$\delta+113^{\circ}=180^{\circ}$
$\delta=180^{\circ}-113^{\circ}$
$\delta=67^{\circ}$

2.2 Find missing angles $\angle L N M$ and $\angle N L M$.
$\angle L N M$ and 70° are supplementary angles.
$\angle L N M+70^{\circ}=180^{\circ}$
$\angle L N M=180^{\circ}-70^{\circ}=110^{\circ}$

We know that all the angles in $\triangle L N M$ add up to 180°.
$\angle N L M+\angle L M N+\angle L N M=180^{\circ}$
$\angle N L M+30^{\circ}+110^{\circ}=180^{\circ}$
$\angle N L M=180^{\circ}-110^{\circ}-30^{\circ}$
$\angle N L M=40^{\circ}$
2.3 Are angles a and b complementary, supplementary or neither? Explain.
We know from triangle properties that the sum of angles in a triangle is 180°
$\angle a+\angle b+90^{\circ}=180^{\circ} \angle a+\angle b=180^{\circ}-90^{\circ}$ $\angle a+\angle b=90^{\circ}$
Since the third angle in the triangle is 90° that leaves $180^{\circ}-90^{\circ}=90^{\circ}$ for the remaining angles $\angle a$ and $\angle b$ Therefore $\angle a+\angle b=90^{\circ}$ making a and b complementary.

2.4 Solve for x :

Angles are supplementary so we have equation:
$3 x+x=180^{\circ}$
$4 x=180^{\circ}$
This equation reads 4 times some angle ' x ' is equal to 180°. To find the measure of the angle we can divide 180° by 4 .
From the above equation:
$\frac{4 x}{4}=\frac{180^{\circ}}{4}$
$x=45^{\circ}$

5

Think...

2.5 In the diagram below $\angle L=\angle M$. Also, $\angle N=\angle O$. (Opposite angles are equal.)Explain why this is true for all X patterns with your knowledge of supplementary angles.
Looking at $\angle O$ we could say that it is supplemental with angles L and angle M . Therefore L and M must be the same.
Mathematically this looks like:
$\angle O+\angle M=180$
$\angle O+\angle L=180$
Thus we could set both of these equations equal:
$\angle O+\angle M=\angle L+\angle O=180$

The only way that these equations are satisfied is if $\angle L=\angle M$
Similarly we can show that $\angle N=\angle O$
2.6 Using the Z pattern shown below, show that the sum of angles in $\triangle A B C$ is 180 degrees. (The Z pattern says that the alternate angles shown as θ in this case are equal.)

Z pattern:

Using the Z pattern we find that we have angles x and y on either side of $\angle z$ in $\triangle A B C$ asshownabove Since we have angles x, y and z forming a straight line we can say that they must add to 180°.
$\angle x+\angle y+\angle z=180^{\circ}$.
Thus we have shown all of the angles in $\triangle A B C$ must add to 180°.

Pythagorean Theorem Examples:

3.1 Determine the length of the diagonal of a square with area $4 \mathrm{~cm}^{2}$

A square with area of $4 \mathrm{~cm}^{2}$ must have side lengths of 2 cm (Area $=$ side \times side)
We are interested in finding the length of the red dashed diagonal of the square. Call the diagonal c.
The dashed line forms a triangle with two sides of the square.
We can use pythagorean thereom to find the length of the dashed line:
$2^{2}+2^{2}=c^{2}$
$4+4=c^{2}$
$8=c^{2}$
$\sqrt{8}=\sqrt{c^{2}}$
$2.828 \ldots=c$
3.2 Would it be valid to perform $c^{2}+b^{2}$ to find a^{2} ? $\left(c^{2}+b^{2}=a^{2}\right)$ on the triangle below.

It would not make sense as pythagorean thereom sums the squares of the two smaller sides of the triangle to find the longest side. In this equation we are adding the square of the longest side c to the square of one of the shorter sides $b\left(c^{2}+b^{2}\right)$ to get the length of a smaller side $\left(a^{2}.\right)$ If we tried to find a this way we would find a length for a longer than c which is the longest side of the triangle. Thus this equation is not valid mathematically.

Problem Set:

P. 1 AC is half the length of CD. Find the area and perimeter of $\triangle \mathrm{ABD}$.
$C D=2 \times A C=2 \times 3=6$
Can find area of $\triangle A B D$ as we know the base and height of $\triangle A B D$
base $=\mathrm{AD}=3+6=9$
Area $=($ base $\times h e i g h t) / 2=(9 \times 4) / 2=18$

To find perimeter of $\triangle A B D$ we need sides $A B$ and $B D . W e$ can find them with pythagorean theorem in $\triangle A B C$ and $\triangle B C D$

In $\triangle A B C$:
$A B^{2}=A C^{2}+B C^{2}=3^{2}+4^{2}$
$A B^{2}=25$
$A B=5$

In $\triangle B C D$:
$B D^{2}=B C^{2}+C D^{2}=4^{2}+6^{2}$
$B D^{2}=52$
$B D \approx 7.21 \ldots$
Perimeter $=A B+B D+A D$
Perimeter $=5+7.21+9$
Perimeter $=21.21$
P. 2 Find the measure of $\angle x^{\circ}$
$\angle A$ and 120° are supplementary $\angle A+120^{\circ}=180^{\circ}$ $\angle A=180^{\circ}-120^{\circ}=60^{\circ}$
Can find $\angle C$ using the sum of angles in a triangle. $60^{\circ}+52^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-60^{\circ}-52^{\circ}=68^{\circ}$
Using "X Pattern" from example 2.5 we can then say that $x=68^{\circ}$ (using supplementary angles.)

P. $3 \triangle A B C$ is similar to $\triangle D E F$. The sides of $\triangle D E F$ are proportionately larger by a scale factor of $4 / 3$. What are the sidelengths of $\triangle D E F$? Sketch $\triangle D E F$.

Multiply corresponding sides by the scale factor to obtain sidelengths for $\triangle D E F$. \triangle DEF is the same "shape" as $\triangle \mathrm{ABC}$.
P. 4 Cindy and Steph are each biking. Cindy bikes in a straight line from A to B, then bikes in a straight line from B to C. Steph bikes in a straight line from A to C. Who bikes more distance and by how much?

Cindy Distance: $5 \mathrm{~km}+12 \mathrm{~km}=17 \mathrm{~km}$
Steph Distance: A to C. We can find the distance of AC using Pythagorean Theorem.
$A C=\sqrt{5 \mathrm{~km}^{2}+12 \mathrm{~km}^{2}}$
$A C=13 \mathrm{~km}$
Cindy bikes 17 km and Steph bikes 13 km . Cindy bikes 4 km farther than Steph.
P. 5 if $A E=5 \mathrm{~cm}$ and the area of $\triangle A B C$ is $150 \mathrm{~cm}^{2}$ find the area of $\triangle A D E$. We can seperate the two triangles in the figure.

Area of $\triangle A B C=\frac{\text { base } \times \text { height }}{2}=\frac{A B \times 20}{10}=150$
Rearranging the above equation we can solve for side $A B$:
$A B=\frac{150 \times 10}{20}=15$ We can then find the side AC using pythagorean theorem:
$A C=\sqrt{20^{2}+15^{2}}=25$

We can use the pair of corresponding sides $A C$ and $A E$ to find the scale factor between similar triangles $\triangle A B C$ and $\triangle A D E$.
Scale Factor $=\frac{A C}{A E}=\frac{25 \mathrm{~cm}}{5 \mathrm{~cm}}=5$

With the scale factor sides $A D$ and $D E$ can then be found:
$A D=\frac{A B}{5}=\frac{15 \mathrm{~cm}}{5}=3 \mathrm{~cm}$
$D E=\frac{B C}{5}=\frac{20 \mathrm{~cm}}{5}=4 \mathrm{~cm}$
Area of $\triangle A D E=\frac{\text { base } \times \text { height }}{2}=\frac{A D \times D E}{2}=\frac{3 \times 4}{2}=6 \mathrm{~cm}^{2}$
P. 6 Can we say that $\triangle A B C$ and $\triangle C D E$ are similar from the figure?

From the figure we can see that $\angle B A C$ and $\angle C D E$ are equal right angles.
From the X pattern discussed in 2.5 we can say that the opposite angles $\angle A C B$ and $\angle D C E$ equal.
From the sum of angles, if a triangle has two known angles the third angle can be only one value. Thus since we know $\angle B A C=\angle C D E$ and $\angle A C B=\angle D C E, \angle D E C$ and $\angle A B C$ must be equal.
$\triangle A B C$ and $\triangle C D E$ then have 3 pairs of equal angles meaning they are similar.
P. 7 A blue house is 9 m tall a red house is 3 m tall. The blue house is 40 m from Point Q. Using the fact that $\triangle P O Q$ and $\triangle \mathrm{QRS}$ are similar find the length of a telephone cable run between the houses from R to Q and Q to P .

We can use pythagorean theorem to find $P Q: P Q=\sqrt{9 m^{2}+40 m^{2}}=41 m$
We can find the scale factor between $\triangle O P Q$ and $\triangle Q R S$ using corresponding sides $R S$ and $O P$:
Scale Factor $=\frac{O P}{R S}=\frac{9}{3}=3$
QR can then be found from the scale factor.
$Q R=\frac{41 m}{3}=13.67$
Length of Telephone Pole $=P Q+Q R=41 m+13.67 m=54.67 m$
P. 8 Four Points B , A, E, L are on a straight line, as shown. G is a point of the line so that $\angle B A G=120^{\circ}$ and $\angle G E L=80^{\circ}$. find reflex angle x. Hint: If there are 360° in a circle how are $\angle A G E$ and $\angle x$ related?

Since the sum of the angles at any point on a line is 180°, then $\angle G A E=180^{\circ}-120^{\circ}=60^{\circ}$ and $\angle G E A=180^{\circ}-80^{\circ}=100^{\circ}$.

Since the sum of the angles in a triangle is 180° :
$\angle A G E=180^{\circ}-\angle G A E-\angle G E A=180^{\circ}-60^{\circ}-100^{\circ}=20^{\circ}$.
Since $\angle A G E$ and $\angle x$ form a full circle they must add to 360°. Thus $\angle x$ is the left over angle after taking away $\angle A G E\left(20^{\circ}\right)$ from the circle.
$\angle x=360^{\circ}-20^{\circ}=340^{\circ}$.
P. 9 In the diagram, PW is parallel to QX, S and T lie on QX, and U and V are the points of intersection of PW with SR and TR, respectively. If $\angle P U R=120^{\circ}$ and $\angle V T X=112^{\circ}$, what is the measure of $\angle \mathrm{URV}$?

$\angle P U R$ is opposite of $\angle S U V$ thus we can say that $\angle P U R=\angle S U V=120^{\circ}$
Since $S U R$ is a straight line, $\angle S U V$ and $\angle R U V$ are supplementary, then
$\angle R U V=180^{\circ}-\angle S U V=180^{\circ}-120^{\circ}=60^{\circ}$.
Since $P W$ and $Q X$ are parallel, then $\triangle R U V$ and $\triangle R S T$ have equal corresponding angles and are similar.
Therefore $\angle R V W=\angle V T X=112^{\circ}$.
Since $U V W$ is a straight line, then $\angle R V U=180^{\circ}-\angle R V W=180^{\circ}-112^{\circ}=68^{\circ}$.
Since the measures of the angles in a triangle add to 180° :
$\angle U R V+\angle R U V+\angle R V U=180^{\circ}$
$\angle U R V=180^{\circ}-\angle R U V-\angle R V U=180^{\circ}-60^{\circ}-68^{\circ}=52^{\circ}$
P. 10 Each diagram shows a triangle labelled with its area. Calculate the areas m, n and p .

We can solve this problem by constructing three right triangles around areas m, n, and p in every grid. This allows us to find the area of the full square grid and then subtract away the coloured areas made of right triangles. This will then leave us with just the areas of m, n, and p in each grid respectively.

The area of each grid $=4 \times 4=16$

We can find the sides of each of these coloured triangles by looking at coordinate positions. For example $F B$ connects points $(4,4)$ and $(1,4)$. From looking at the x coordinate we can see that the length of FB is $4-1=3$ units. For line $B E$ connecting $(4,4)$ to $(4,1)$ the difference is in the y coordinates. We can say that $B E$ is $4-1=3$ units.

Repeating this we can find the side lengths of all the triangles. We can then calculated the area of our coloured regions.

In grid with area m, the area of the shaded region is divided into three triangles. The areas of the triangles can be found as follows:
$\triangle B E F:$ Area $=\frac{3 \times 3}{2}=4.5$
$\triangle A E O:$ Area $=\frac{4 \times 1}{2}=2$
$\triangle C F O:$ Area $=\frac{4 \times 1}{2}=2$

Area of shaded region $=$ Area $\triangle B E F+$ Area $\triangle A E O+\triangle C F O$
Area of shaded region $=4.5+2+2=8.5$
Area $m=$ Area grid - Area shaded
Area $m=16-8.5=7.5$
The same process can be repeated to find areas n and p .
Area $n=16-6-1.6-2=6.5$
Area $p=16-3-4-2=7$
P. 11 In the right-angled $\triangle P Q R, P Q=Q R$. The segments $Q S, T U$ and $V W$ are perpendicular to $P R$, and the segments $S T$ and $U V$ are perpendicular to $Q R$, as shown. What fraction of $\triangle P Q R$ is shaded?

Since $\triangle P Q R$ is isosceles with $P Q=Q R$ and $\angle P Q R=90^{\circ}$, then $\angle Q P R=\angle Q R S=45^{\circ}$. Also in $\triangle P Q R$, altitude $Q S$ bisects $P R(P S=S R)$ forming two identical triangles, SQP and SQR.
Since these two triangles are identical, each has $\frac{1}{2}$ of the area of $\triangle P Q R$.
In $\triangle S Q R, \angle Q S R=90^{\circ}, \angle Q R S=45^{\circ}$, and so $\angle S Q R=45^{\circ}$.
Thus, $\triangle S Q R$ is also isosceles with $\mathrm{SQ}=\mathrm{SR}$.
Then similarly, altitude $S T$ bisects $Q R(Q T=T R)$ forming two identical triangles, $S Q T$ and $S R T$. Since these two triangles are identical, each has $\frac{1}{2}$ of the area of $\triangle S Q R$ or $\frac{1}{4}$ of the area of $\triangle P Q R$.
Continuing in this way, altitude $T U$ divides $\triangle S T R$ into two identical triangles, STU and RTU.
Each of these two triangles has $\frac{1}{4}$ of $\frac{1}{2}$ or $\frac{1}{8}$ of the area of $\triangle P Q R$.
Continuing, altitude $U V$ divides $\triangle R T U$ into two identical triangles, $R U V$ and $T U V$.
Each of these two triangles has $\frac{1}{2}$ of $\frac{1}{8}$ or $\frac{1}{16}$ of the area of $\triangle P Q R$. Finally, altitude $V W$ divides $\triangle R U V$ into two identical triangles, $U V W$ and $R V W$. Each of these two triangles has $\frac{1}{2}$ of $\frac{1}{16}$ or $\frac{1}{32}$ of the area of $\triangle P Q R$. Since the area of STU is $\frac{1}{8}$ of the area of $\triangle P Q R$, and the area of $\triangle U V W$ is $\frac{1}{32}$ of the area of $\triangle P Q R$, then the total fraction of $\triangle P Q R$ that is shaded is $\frac{1}{8}+\frac{1}{32}=\frac{1+4}{32}$ or $\frac{5}{32}$.

