
Math Circles Fall 2019 Number Theory

Day 2: Euclidean Algorithm and Squares for Prime Moduli

Last time, we had an in-depth discussion on the integers modulo n and how operations of addition, sub-
traction, and multiplication work modulo n, and briefly discussed division. Using the Euclidean Algorithm
to deduce the greatest common divisor of two numbers can actually unlock the key to computing an inverse
modulo n. Let’s get started!

GCDs and The Euclidean Algorithm

Finding the greatest common divisor (gcd) is another concept from elementary school years that has great
relevance in Number Theory, and especially in Modular Arithmetic. The presence of a gcd greater than 1
is something you should note in Question 1 of Problem Set 1. Its utility for our purposes will mainly be
to help us compute inverses modulo n without having to do large amounts of multiplication (as you did in
Question 1.) For larger moduli, this becomes inefficient/cumbersome very quickly!

To begin, let’s recap the notion of divisibility. You should be familiar with the notion that the integer
3 divides 12 but not 14, as 3 is a factor of 12, but not 14. We use the following formal definition:

Definition: Let d, n ∈ Z. We say that d divides n if n = qd for some q ∈ Z. We write d | n to say “d
divides n”.

From here, we can easily define the notion of a greatest common divisor - you may know this as the
“greatest common factor”.

Definition: Let k, n ∈ Z be non-zero integers. The greatest common divisor (gcd) of k and n is the
largest positive integer d such that d | k and d | n. We write d = gcd(k, n).

Divisibility has a lot of nice properties! Here’s a few:

Theorem: Let a, b, d ∈ Z. Then

(a) If d | a then d | ca for any c ∈ Z.

(b) If d | a and d | b then d | (a + b).

(c) d | a and d | b if and only if d | (ax + by) for any x, y ∈ Z.

(d) Let k ∈ Z be a common divisor of a and b; that is, k | a and k | b. Then k | gcd(a, b).

The proofs of these results are left for Problem Set 2.

How do we find the gcd of two numbers? Well, you’re probably used to splitting off common factors
until you can’t do so anymore, and collecting your result. This doesn’t work well in general. For exam-
ple: what is gcd(1955, 595)? Or gcd(278783, 22103)? The division algorithm will lend us a hand once again!
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Recall from last time, our division algorithm: if n, k ∈ Z, there is a unique choice of integers q and r,
where 0 ≤ r < k, such that

n = qk + r.

Suppose now that d = gcd(n, k). From the theorem above, we know that as d | n and d | k, then d | (n−qk).
Thus, d | r as r = n− qk. So k and r have common factors. In fact, they have the same gcd as n and k.
We can apply the division algorithm again to d and r:

d = q1r + r1, 0 ≤ r1 ≤ r.

We can keep doing this over and over and over until we get a remainder of 0. Once we’re there, we can’t
get any new information from the division algorithm. Hang on... how do we know that this algorithm will
end after a finite number of steps? Think about it!

As it turns out, the last non-zero remainder from iterating the division algorithm over and over will
always be the gcd! The process of finding the gcd from iterating the division algorithm is known as the
Euclidean algorithm. Let’s see this in action.

Example: Compute gcd(24, 57).

Solution: You should be able to tell from inspection (in this “easy” case) that the gcd is 3. We’ll use the
Euclidean algorithm to confirm this.

57 = 2 · 24 + 9

24 = 2 · 9 + 6

9 = 1 · 6 + 3

6 = 2 · 3 + 0 STOP!

Our last non-zero remainder was 3, so gcd(24, 57) = 3. �

Note: These notes will use � to indicate the end of an example, and � to indicate the end of a proof.

Example 2: Compute gcd(82, 32).

Solution: Again, we should know to expect 2 as the result here. Let’s confirm.

82 = 2 · 32 + 18

32 = 1 · 18 + 14

18 = 1 · 14 + 4

14 = 3 · 4 + 2

4 = 2 · 2 + 0 STOP!

Our last non-zero remainder was 2, so gcd(82, 32) = 2. �

You were promised inverses modulo n, but these are just GCDs. What gives? Well, to get in-
verses modulo n, we’re going to have to go backwards! For that, we’re going to need what is called the
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extended Euclidean algorithm.

For integers a and b, our objective now will be to express the gcd(a, b) as a linear combination of a and
b. Why we want this will become clear soon. By a linear combination of a and b, we mean an expression
ax + by where x, y ∈ Z.

The process will be as follows: start with the final equation without zero (i.e. the one that contains
the gcd as the remainder!) It should look like

rn−2 = qn−1rn−1 + rn, (1)

where rn is your gcd. Solve the equation for rn. Now, the line above equation (1) should look like
rn−3 = qn−2rn−2 + rn−1 and can be solved for rn−1. Substitute this value for rn−1 into equation (1). You’ll
be tempted to expand the products involved - don’t! You want to collect coefficients! Continue this process
until you’re at the first line of the algorithm, which involves the values a and b which you wanted the gcd
of. Once you’ve collected the coefficients, you’ll have the equation ax + by = rn, where rn = gcd(a, b).

In short: Solve every equation for the remainder in that equation. Starting with the second-last equation
(i.e. when gcd(a, b) is the remainder), substitute in the expression for the remainder from the line above.
Collect coefficients, then input the expression for the next remainder from above. Continue until you have
gcd(a, b) as a linear combination of a and b.

All that may sound confusing without some examples. Let’s apply this to our last two examples.

Example 1: Our workings from computing gcd(24, 57).

Original Equation Solved for Remainder

57 = 2 · 24 + 9 9 = 57− 2 · 24

24 = 2 · 9 + 6 6 = 24− 2 · 9

9 = 1 · 6 + 3 3 = 9− 1 · 6

6 = 2 · 3 + 0 don’t rearrange this one

Now, begin substitution. Start with 3 = 9−1 ·6 and substitute the expression for 6 in the equation above.

3 = 9− 1 · 6

= 9− 1 · [24− 2 · 9] now, collect coefficients on 24 and 9

= 3 · 9− 24

From here, use the expression for 9 and substitute it in.

3 = 3 · 9− 24

= 3 · [57− 2 · 24]− 24 now, collect coefficients on 24 and 57

= 3 · 57− 7 · 24.
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Therefore, 3 = 3 · 57− 7 · 24 is a linear combination of gcd(24, 57) in terms of 24 and 57. �

Example 2: Our workings from gcd(82, 32).

Original Equation Solved for Remainder

82 = 2 · 32 + 18 18 = 82− 2 · 32

32 = 1 · 18 + 14 14 = 32− 1 · 18

18 = 1 · 14 + 4 4 = 18− 1 · 14

14 = 3 · 4 + 2 2 = 14− 3 · 4

4 = 2 · 2 + 0 don’t rearrange this one

Now, start substituting upwards. We’ll do this all in one shot this time.

2 = 14− 3 · 4

= 14− 3 · [18− 1 · 14] now, collect coefficients on 18 and 14

= 4 · 14− 3 · 18

= 4 · [32− 1 · 18]− 3 · 18 now, collect coefficients on 32 and 18

= 4 · 32− 7 · 18

= 4 · 32− 7 · [82− 2 · 32] now. collect coefficients on 82 and 32

= 18 · 32− 7 · 82

Therefore, 2 = 18 · 32− 7 · 82 is a linear combination of gcd(82, 32) in terms of 32 and 82. �

So how does this help us with inverses modulo n? From Problem Set 1, we noticed that a−1 existed in
Zn when a and n had no common factors other than 1... a.k.a. their greatest common divisor was 1!
So, if gcd(a, n) = 1, we know from the extended Euclidean algorithm that there exists integers x, y ∈ Z
such that

ax + ny = 1.

Now consider this equation modulo n. We have

1 ≡ ax + ny ≡ ax + 0 ≡ ax (mod n).

Thus, as ax ≡ 1 (mod n), we have that a−1 ≡ x (mod n). Often times x will be presented as a number
larger than n or negative, so you’ll need to reduce it modulo n to get a−1.

One last definition to round things off. For each n ≥ 2, there are elements in Zn which are invertible
(gcd with n is 1), and elements which are not invertible (elements which share a common factor with n
other than 1). Let’s group the invertible ones together.
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Definition: For n ≥ 2, define the set Z∗
n to be the set of all elements in Zn which have inverses; that is,

Z∗
n = {a ∈ Zn | gcd(a, n) = 1} .

We call Z∗
n the group of units modulo n.

For those who attended the Group Theory sessions last year, this is an example of a group!

With that, we’re ready for Problem Set 2!

Quadratic Residues: A Brief Introduction

First, recall from the Problem Set 2 that Z∗
p = {1, 2, 3..., p− 1}. That is, every non-zero element of Zp is

invertible! We’ll focus our treatment to odd primes (i.e. p 6= 2 and is prime) since Z∗
2 = {1} and there’s

nothing interesting happening there.

Definition: Let p be an odd prime and let a ∈ Z∗
p. We say a is a quadratic residue modulo p if there

exists an element x ∈ Z∗
p such that x2 ≡ a (mod p). That is, a is a square modulo p.

In Problem Set 1 you were asked to analyze squares modulo different values of n. Let’s take a look at
the squares (and non-squares) modulo primes starting at p = 5. For brevity, we’ll truncate x2 (mod 5) as
x2 (5).

Z5 Z7

x 1 2 3 4

x2 (5) 1 4 4 1

x 1 2 3 4 5 6

x2 (7) 1 4 2 2 4 1

squares: 1, 4 squares: 1, 2, 4

non-squares: 2, 3 non-squares: 3, 5, 6

There are a few patterns at play here. For the moment, we’ll focus on the fact that values of x2 repeat

in reverse order after passing
p− 1

2
. Indeed, modulo 5, we have −1 ≡ 4 (mod 5) and −2 ≡ 3 (mod 5).

Modulo 7, we have −1 ≡ 6 (mod 7), −2 ≡ 5 (mod 7), and −3 ≡ 4 (mod 7). In general, it makes sense
that (−x)2 ≡ x2 (mod n) as (−x)2 = x2 in the integers themselves! Thus, we can consider fewer values to
build these tables. Let’s do this again for Z11 and Z13.

Z11 Z13

x ±1 ±2 ±3 ±4 ±5

x2 (11) 1 4 9 5 3

x ±1 ±2 ±3 ±4 ±5 ±6

x2 (13) 1 4 9 3 12 10

squares: 1, 3, 4, 5, 9 squares: 1, 3, 4, 9, 10, 12

non-squares: 2, 6, 7, 8, 10 non-squares: 2, 5, 6, 7, 8, 11
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A couple of patterns are emerging from these tables. These patterns hold true for general odd primes p.

1. In Z∗
p, exactly half of the elements are squares/residues. The other half are not.

2. Every square in Z∗
p has exactly 2 distinct square roots.

We’ll explore these results and more in next week’s session!
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