

## Problem Set 2: GCDs and The Euclidean Algorithm

- 5) Find an integer solution to the following Diophantine equations:
  - (a) 4x + 15y = 1 (try this one without the Euclidean algorithm can you quickly guess x and y?)
  - (b) 7x + 9y = 1
  - (c) 26x + 38y = 6
- 6) Compute the following inverses in  $\mathbb{Z}_n$ . You will want to use your work in Question 5) for all of these!
  - (a)  $4^{-1}$  in  $\mathbb{Z}_{15}$
  - (b)  $7^{-1}$  in  $\mathbb{Z}_9$
  - (c)  $2^{-1}$  in  $\mathbb{Z}_7$
  - (d)  $13^{-1}$  in  $\mathbb{Z}_{19}$
- 7) The extended Euclidean algorithm applied to a and b provides **one** solution to the equation ax + by = g where g = gcd(a, b), but there are many more solutions! To this end, find **three** different pairs of integers (x, y) such that 4x + 3y = 1.
- 8) For a positive integer d and an integer n, remember that if  $n \equiv r \pmod{d}$  where  $0 \leq r < d$ , then n = qd + r for some  $q \in \mathbb{Z}$ .
  - Let  $n \in \mathbb{Z}$  be positive and set d = 2. Prove the following statements:
  - (a) If n ≡ 0 (mod 2), then gcd(n, n + 2) = 2. (if n ≡ 0 (mod 2), what kind of number is n?)
    (b) If n ≡ 1 (mod 2), then gcd(n, n + 2) = 1. (if n ≡ 1 (mod 2), what kind of number is n?)
- 9) For  $a, d \in \mathbb{Z}$  where  $d \neq 0$ , restate the definition of  $d \mid a$  in the language of modular arithmetic.
- **10)** Prove that  $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}.$
- **11)** Prove the following for  $a, b, d \in \mathbb{Z}$ :
  - (a) If  $d \mid a$  then  $d \mid ca$  for any  $c \in \mathbb{Z}$ .
  - (b) If  $d \mid a$  and  $d \mid b$  then  $d \mid (a+b)$ .
  - (c) If  $d \mid a$  and  $d \mid b$  then  $d \mid (ax + by)$  for any  $x, y \in \mathbb{Z}$ .
  - (d) Let  $k \in \mathbb{Z}$  be a common divisor of a and b; that is,  $k \mid a$  and  $k \mid b$ . Prove that  $k \mid gcd(a, b)$ . *Hint: Modular arithmetic won't be as helpful here.*
- 12) In  $\mathbb{Z}_n$ , we can't divide by any number that has a common factor with n. However, we *CAN* divide congruences by common factors!

Suppose that  $a, b, n \in \mathbb{Z}$  have a common factor of k, where  $k \in \mathbb{Z}$ ,  $k \neq 0$ , and  $n \neq 0$ . Prove the following statement:

If 
$$a \equiv b \pmod{n}$$
, then  $\frac{a}{k} \equiv \frac{b}{k} \pmod{\frac{n}{k}}$ 

13) Prove that the Euclidean algorithm always results in the greatest common divisor!