Problem Set 2: GCDs and The Euclidean Algorithm

5) Find an integer solution to the following Diophantine equations:
(a) $4 x+15 y=1 \quad$ (try this one without the Euclidean algorithm - can you quickly guess x and y ?)
(b) $7 x+9 y=1$
(c) $26 x+38 y=6$
6) Compute the following inverses in \mathbb{Z}_{n}. You will want to use your work in Question 5) for all of these!
(a) 4^{-1} in \mathbb{Z}_{15}
(b) 7^{-1} in \mathbb{Z}_{9}
(c) 2^{-1} in \mathbb{Z}_{7}
(d) 13^{-1} in \mathbb{Z}_{19}
7) The extended Euclidean algorithm applied to a and b provides one solution to the equation $a x+b y=g$ where $g=\operatorname{gcd}(a, b)$, but there are many more solutions! To this end, find three different pairs of integers (x, y) such that $4 x+3 y=1$.
8) For a positive integer d and an integer n, remember that if $n \equiv r(\bmod d)$ where $0 \leq r<d$, then $n=q d+r$ for some $q \in \mathbb{Z}$.
Let $n \in \mathbb{Z}$ be positive and set $d=2$. Prove the following statements:
(a) If $n \equiv 0(\bmod 2)$, then $\operatorname{gcd}(n, n+2)=2$. (if $n \equiv 0(\bmod 2)$, what kind of number is n ?)
(b) If $n \equiv 1(\bmod 2)$, then $\operatorname{gcd}(n, n+2)=1$. (if $n \equiv 1(\bmod 2)$, what kind of number is n ?)
9) For $a, d \in \mathbb{Z}$ where $d \neq 0$, restate the definition of $d \mid a$ in the language of modular arithmetic.
10) Prove that $\mathbb{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\}$.
11) Prove the following for $a, b, d \in \mathbb{Z}$:
(a) If $d \mid a$ then $d \mid c a$ for any $c \in \mathbb{Z}$.
(b) If $d \mid a$ and $d \mid b$ then $d \mid(a+b)$.
(c) If $d \mid a$ and $d \mid b$ then $d \mid(a x+b y)$ for any $x, y \in \mathbb{Z}$.
(d) Let $k \in \mathbb{Z}$ be a common divisor of a and b; that is, $k \mid a$ and $k \mid b$. Prove that $k \mid \operatorname{gcd}(a, b)$. Hint: Modular arithmetic won't be as helpful here.
12) In \mathbb{Z}_{n}, we can't divide by any number that has a common factor with n. However, we $C A N$ divide congruences by common factors!

Suppose that $a, b, n \in \mathbb{Z}$ have a common factor of k, where $k \in \mathbb{Z}, k \neq 0$, and $n \neq 0$. Prove the following statement:

$$
\text { If } a \equiv b(\bmod n), \text { then } \frac{a}{k} \equiv \frac{b}{k}\left(\bmod \frac{n}{k}\right)
$$

13) Prove that the Euclidean algorithm always results in the greatest common divisor!
