Problem Set 2: GCDs and The Euclidean Algorithm

5) Find an integer solution to the following Diophantine equations:
(a) $4 x+15 y=1 \quad$ (try this one without the Euclidean algorithm - can you quickly guess x and y ?)

Solution: We can guess x and y here. If $x=4$ and $y=-1$, we have $4 x+15 y=16-15=1$.
(b) $7 x+9 y=1$

Solution: We can also do this one without a Euclidean Algorithm! With $x=4$ and $y=-3$, we have $7 x+9 y=28-27=1$.
(c) $26 x+38 y=6$

Solution: This one isn't as obvious, so let's use the algorithm. We'll do the workings in tandem with solving for the remainders

Equation	Solved for Remainder
$38=1 \cdot 26+12$	$12=38-1 \cdot 26$
$26=2 \cdot 12+2$	$2=26-2 \cdot 12$
$12=6 \cdot 2+0$	don't rearrange this one

Therefore, we have

$$
\begin{aligned}
2 & =26-2 \cdot 12 \\
& =26-2(38-1 \cdot 26) \\
& =3 \cdot 26-2 \cdot 38 .
\end{aligned}
$$

Therefore,

$$
26 \cdot 3+38 \cdot(-2)=2
$$

But that's not the equation we wanted! We wanted the right-hand side to be 6 . We can simply multiply the entire equation by 3 to achieve this.

$$
\begin{aligned}
& 3 \cdot(26 \cdot 3+38 \cdot(-2))=3 \cdot 2 \\
\Rightarrow & 26 \cdot 9+38 \cdot(-6)=6 .
\end{aligned}
$$

Therefore, with $x=9$ and $y=-6$, we have $26 x+38 y=6$.
6) Compute the following inverses in \mathbb{Z}_{n}. You will want to use your work in Question 5) for all of these!
(a) 4^{-1} in \mathbb{Z}_{15}

Solution: From Question 5, we had that $4 \cdot 4+15 \cdot(-1)=1$. Modulo 15, this equation becomes $4 \cdot 4+0 \equiv 1(\bmod 15)$, so $4^{-1} \equiv 4(\bmod 15)$.
(b) 7^{-1} in \mathbb{Z}_{9}

Solution: From Question 5, we had that $7 \cdot 4+9 \cdot(-3)=1$. Modulo 9, this equation becomes $7 \cdot 4+0 \equiv 1(\bmod 9)$, so $7^{-1} \equiv 4(\bmod 9)$.
(c) 2^{-1} in \mathbb{Z}_{7}

Solution: Look back at the equation used in part (b). Modulo 7 , we have $9 \equiv 2(\bmod 7)$.
So if we reduce the equation $7 \cdot 4+9 \cdot(-3)=1$ modulo 7 instead of 9 , we get our result! Thus, modulo 7 , we have $2 \cdot-3 \equiv 1(\bmod 7)$, so $2^{-1} \equiv-3 \equiv 4(\bmod 7) . \quad 4$ is popular in this question!
(d) 13^{-1} in \mathbb{Z}_{19}

Solution: From Question 5, it doesn't look like we have any information to use on first glance. However, since 13 is half of 26 and 19 is half of 38 , we can divide the linear combination for the gcd of 26 and 38 by in the solution to 5 (c) by 2 to arrive at our answer.

We had $26 \cdot 3+38(-2)=2$. Dividing by 2 , we have $13 \cdot 3+19(-2)=1$. Reducing modulo 19 , we have $13 \cdot 3 \equiv 1(\bmod 19)$, so $13^{-1} \equiv 3(\bmod 19)$.
7) The extended Euclidean algorithm applied to a and b provides one solution to the equation $a x+b y=g$ where $g=\operatorname{gcd}(a, b)$, but there are many more solutions! To this end, find three different pairs of integers (x, y) such that $4 x+3 y=1$.

Solution: First, the obvious: $(x, y)=(1,-1)$ is a solution. From there, think of multiples of 4 and 3 that are one apart. We have $9-8=1$ and $16-15=1$. So pairs $(x, y)=(-2,3)$ and $(4,-5)$ both work here. An infinite number of pairs exist - these are just the "easiest" three to find!
8) For a positive integer d and an integer n, remember that if $n \equiv r(\bmod d)$ where $0 \leq r<d$, then $n=q d+r$ for some $q \in \mathbb{Z}$.
Let $n \in \mathbb{Z}$ be positive and set $d=2$. Prove the following statements:
(a) If $n \equiv 0(\bmod 2)$, then $\operatorname{gcd}(n, n+2)=2$. (if $n \equiv 0(\bmod 2)$, what kind of number is n ?)

Proof: If $n \equiv 0(\bmod 2)$, then n is even! Let $n=2 k$ for some $k \in \mathbb{Z}$, so $n+2=2 k+2$. Then

$$
\begin{aligned}
2 k+2 & =2 k \cdot 1+2 \\
2 k & =k \cdot 2+0 .
\end{aligned}
$$

Therefore, the gcd is 2 by the Euclidean algorithm.
(b) If $n \equiv 1(\bmod 2)$, then $\operatorname{gcd}(n, n+2)=1$. (if $n \equiv 1(\bmod 2)$, what kind of number is n ?)

Proof: If $n \equiv 1(\bmod 2)$, then n is odd! Let $n=2 k+1$ for some $k \in \mathbb{Z}$, so $n+2=2 k+3$. Then

$$
\begin{aligned}
2 k+3 & =1 \cdot(2 k+1)+2 \\
2 k+1 & =k \cdot 2+1 \\
2 & =2 \cdot 1+0 .
\end{aligned}
$$

Therefore, the gcd is 1 by the Euclidean algorithm.
9) For $a, d \in \mathbb{Z}$ where $d \neq 0$, restate the definition of $d \mid a$ in the language of modular arithmetic.

Solution: If $d \mid a$, then $a=q d$ for some $q \in \mathbb{Z}$. Reducing modulo d, we have that $d \mid a$ when $a \equiv 0(\bmod d)$.
10) Prove that $\mathbb{Z}_{p}^{*}=\{1,2,3, \ldots, p-1\}$.

Proof: Since p is a prime, if $\operatorname{gcd}(x, p) \neq 1$, then it must be p, since p is prime! Since $p>x$ for all $x \in \mathbb{Z}_{p}$, we have that $\operatorname{gcd}(x, p)=1$ for $1 \leq x \leq p-1$, so $\mathbb{Z}_{p} *=\{1,2,3, \ldots, p-1\}$.
11) Prove the following for $a, b, d \in \mathbb{Z}$:
(a) If $d \mid a$ then $d \mid c a$ for any $c \in \mathbb{Z}$.

Proof: Let $c \in \mathbb{Z}$. If $d \mid a$, then $a \equiv 0(\bmod d)$. Thus $c a \equiv c \cdot 0 \equiv 0(\bmod d)$, so $d \mid c a$. As c was chosen arbitarily, this holds for all integers $c \in \mathbb{Z}$.
(b) If $d \mid a$ and $d \mid b$ then $d \mid(a+b)$.

Proof: If $d \mid a$ and $d \mid b$, then $a \equiv 0(\bmod d)$ and $b \equiv 0(\bmod d)$. Then $a+b \equiv 0+0 \equiv 0(\bmod d)$, so $d \mid(a+b)$.
(c) If $d \mid a$ and $d \mid b$ then $d \mid(a x+b y)$ for any $x, y \in \mathbb{Z}$.

Proof: Let $x, y \in \mathbb{Z}$ be arbitrary integers. If $d \mid a$ and $d \mid b$, then $a \equiv 0(\bmod d)$ and $b \equiv 0(\bmod d)$. Thus $a x+b y \equiv 0 \cdot x+0 \cdot y \equiv 0(\bmod d)$, so $d \mid(a x+b y)$ for any $x, y \in \mathbb{Z}$.
(d) Let $k \in \mathbb{Z}$ be a common divisor of a and b; that is, $k \mid a$ and $k \mid b$. Prove that $k \mid \operatorname{gcd}(a, b)$.

Proof: If $d=\operatorname{gcd}(a, b)$ then there exists integers x and y such that $a x+b y=d$. From part (c) above, if $k \mid a$ and $k \mid b$, then $k \mid(a x+b y)$. Therefore, $k \mid d$.
12) In \mathbb{Z}_{n}, we can't divide by any number that has a common factor with n. However, we $C A N$ divide congruences by common factors!

Suppose that $a, b, n \in \mathbb{Z}$ have a common factor of k, where $k \in \mathbb{Z}, k \neq 0$, and $n \neq 0$. Prove the following statement:

$$
\text { If } a \equiv b(\bmod n), \text { then } \frac{a}{k} \equiv \frac{b}{k}\left(\bmod \frac{n}{k}\right) .
$$

Proof: Suppose $a \equiv b(\bmod n)$. Then $a-b \equiv 0(\bmod n)$, so $a-b=q n$ for some $q \in \mathbb{Z}$. Now, if k is a common factor to all of a, b, and n, then we can divide each term in this equation by k and all resulting terms will be integers. We have

$$
\frac{a-b}{k}=\frac{q n}{k} .
$$

We can rewrite this as

$$
\frac{a}{k}-\frac{b}{k}=q \cdot \frac{n}{k} .
$$

Since k divides each of a, b, n, these are all integers. Thus, modulo $\frac{n}{k}$, we have

$$
\frac{a}{k}-\frac{b}{k} \equiv 0\left(\bmod \frac{n}{k}\right) \Rightarrow \frac{a}{k} \equiv \frac{b}{k}\left(\bmod \frac{n}{k}\right) .
$$

13) Prove that the Euclidean algorithm always results in the greatest common divisor!

Hint: We won't spoil this one! However, here's a few things to think about in considering gcd (n, k).

- The division algorithm gives $n=q \cdot k+r$. If $d=\operatorname{gcd}(n, k)$, what can you say about d and r ?
- Why must this algorithm terminate after a finite number of steps?
- How do you know the last remainder must be the gcd?

