
Math Circles Fall 2019 Number Theory

Problem Set 2: GCDs and The Euclidean Algorithm

5) Find an integer solution to the following Diophantine equations:

(a) 4x + 15y = 1 (try this one without the Euclidean algorithm - can you quickly guess x and y?)

Solution: We can guess x and y here. If x = 4 and y = −1, we have 4x + 15y = 16− 15 = 1. �

(b) 7x + 9y = 1

Solution: We can also do this one without a Euclidean Algorithm! With x = 4 and y = −3, we
have 7x + 9y = 28− 27 = 1. �

(c) 26x + 38y = 6

Solution: This one isn’t as obvious, so let’s use the algorithm. We’ll do the workings in tandem
with solving for the remainders

Equation Solved for Remainder

38 = 1 · 26 + 12 12 = 38− 1 · 26

26 = 2 · 12 + 2 2 = 26− 2 · 12

12 = 6 · 2 + 0 don’t rearrange this one

Therefore, we have

2 = 26− 2 · 12

= 26− 2(38− 1 · 26)

= 3 · 26− 2 · 38.

Therefore,

26 · 3 + 38 · (−2) = 2.

But that’s not the equation we wanted! We wanted the right-hand side to be 6. We can simply
multiply the entire equation by 3 to achieve this.

3 · (26 · 3 + 38 · (−2) ) = 3 · 2

⇒ 26 · 9 + 38 · (−6) = 6.

Therefore, with x = 9 and y = −6, we have 26x + 38y = 6. �

6) Compute the following inverses in Zn. You will want to use your work in Question 5) for all of these!

Page 1 of 4 November 6, 2019 Problem Sets Solutions Day 2



Math Circles Fall 2019 Number Theory

(a) 4−1 in Z15

Solution: From Question 5, we had that 4 · 4 + 15 · (−1) = 1. Modulo 15, this equation becomes
4 · 4 + 0 ≡ 1 (mod 15), so 4−1 ≡ 4 (mod 15). �

(b) 7−1 in Z9

Solution: From Question 5, we had that 7 · 4 + 9 · (−3) = 1. Modulo 9, this equation becomes
7 · 4 + 0 ≡ 1 (mod 9), so 7−1 ≡ 4 (mod 9). �

(c) 2−1 in Z7

Solution: Look back at the equation used in part (b). Modulo 7, we have 9 ≡ 2 (mod 7).

So if we reduce the equation 7 · 4 + 9 · (−3) = 1 modulo 7 instead of 9, we get our result! Thus,
modulo 7, we have 2 · −3 ≡ 1 (mod 7), so 2−1 ≡ −3 ≡ 4 (mod 7). 4 is popular in this question!

(d) 13−1 in Z19

Solution: From Question 5, it doesn’t look like we have any information to use on first glance.
However, since 13 is half of 26 and 19 is half of 38, we can divide the linear combination for the
gcd of 26 and 38 by in the solution to 5 (c) by 2 to arrive at our answer.

We had 26 · 3 + 38(−2) = 2. Dividing by 2, we have 13 · 3 + 19(−2) = 1. Reducing modulo 19, we
have 13 · 3 ≡ 1 (mod 19), so 13−1 ≡ 3 (mod 19). �

7) The extended Euclidean algorithm applied to a and b provides one solution to the equation ax+by = g
where g = gcd(a, b), but there are many more solutions! To this end, find three different pairs of in-
tegers (x, y) such that 4x + 3y = 1.

Solution: First, the obvious: (x, y) = (1,−1) is a solution. From there, think of multiples of 4 and 3
that are one apart. We have 9 − 8 = 1 and 16 − 15 = 1. So pairs (x, y) = (−2, 3) and (4,−5) both
work here. An infinite number of pairs exist - these are just the “easiest” three to find! �

8) For a positive integer d and an integer n, remember that if n ≡ r (mod d) where 0 ≤ r < d, then
n = qd + r for some q ∈ Z.

Let n ∈ Z be positive and set d = 2. Prove the following statements:

(a) If n ≡ 0 (mod 2), then gcd(n, n + 2) = 2. (if n ≡ 0 (mod 2), what kind of number is n?)

Proof: If n ≡ 0 (mod 2), then n is even! Let n = 2k for some k ∈ Z, so n + 2 = 2k + 2. Then

2k + 2 = 2k · 1 + 2

2k = k · 2 + 0.

Page 2 of 4 November 6, 2019 Problem Sets Solutions Day 2



Math Circles Fall 2019 Number Theory

Therefore, the gcd is 2 by the Euclidean algorithm. �

(b) If n ≡ 1 (mod 2), then gcd(n, n + 2) = 1. (if n ≡ 1 (mod 2), what kind of number is n?)

Proof: If n ≡ 1 (mod 2), then n is odd! Let n = 2k + 1 for some k ∈ Z, so n + 2 = 2k + 3. Then

2k + 3 = 1 · (2k + 1) + 2

2k + 1 = k · 2 + 1

2 = 2 · 1 + 0.

Therefore, the gcd is 1 by the Euclidean algorithm. �

9) For a, d ∈ Z where d 6= 0, restate the definition of d | a in the language of modular arithmetic.

Solution: If d | a, then a = qd for some q ∈ Z. Reducing modulo d, we have that d | a when
a ≡ 0 (mod d). �

10) Prove that Z∗
p = {1, 2, 3, ..., p− 1}.

Proof: Since p is a prime, if gcd(x, p) 6= 1, then it must be p, since p is prime! Since p > x for all
x ∈ Zp, we have that gcd(x, p) = 1 for 1 ≤ x ≤ p− 1, so Zp∗ = {1, 2, 3, ..., p− 1}. �

11) Prove the following for a, b, d ∈ Z:

(a) If d | a then d | ca for any c ∈ Z.

Proof: Let c ∈ Z. If d | a, then a ≡ 0 (mod d). Thus ca ≡ c · 0 ≡ 0 (mod d), so d | ca. As c was
chosen arbitarily, this holds for all integers c ∈ Z. �

(b) If d | a and d | b then d | (a + b).

Proof: If d | a and d | b, then a ≡ 0 (mod d) and b ≡ 0 (mod d). Then a+b ≡ 0+0 ≡ 0 (mod d),
so d | (a + b). �

(c) If d | a and d | b then d | (ax + by) for any x, y ∈ Z.

Proof: Let x, y ∈ Z be arbitrary integers. If d | a and d | b, then a ≡ 0 (mod d) and b ≡ 0 (mod d).
Thus ax + by ≡ 0 · x + 0 · y ≡ 0 (mod d), so d | (ax + by) for any x, y ∈ Z. �
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(d) Let k ∈ Z be a common divisor of a and b; that is, k | a and k | b. Prove that k | gcd(a, b).

Proof: If d = gcd(a, b) then there exists integers x and y such that ax + by = d. From part (c)
above, if k | a and k | b, then k | (ax + by). Therefore, k | d. �

12) In Zn, we can’t divide by any number that has a common factor with n. However, we CAN divide
congruences by common factors!

Suppose that a, b, n ∈ Z have a common factor of k, where k ∈ Z, k 6= 0, and n 6= 0. Prove the
following statement:

If a ≡ b (mod n) , then
a

k
≡ b

k

(
mod

n

k

)
.

Proof: Suppose a ≡ b (mod n). Then a − b ≡ 0 (mod n), so a − b = qn for some q ∈ Z. Now, if
k is a common factor to all of a, b, and n, then we can divide each term in this equation by k and all
resulting terms will be integers. We have

a− b

k
=

qn

k
.

We can rewrite this as

a

k
− b

k
= q · n

k
.

Since k divides each of a, b, n, these are all integers. Thus, modulo
n

k
, we have

a

k
− b

k
≡ 0

(
mod

n

k

)
⇒ a

k
≡ b

k

(
mod

n

k

)
. �

13) Prove that the Euclidean algorithm always results in the greatest common divisor!

Hint: We won’t spoil this one! However, here’s a few things to think about in considering gcd(n, k).

• The division algorithm gives n = q · k + r. If d = gcd(n, k), what can you say about d and r?

• Why must this algorithm terminate after a finite number of steps?

• How do you know the last remainder must be the gcd?
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