
Math Circles Fall 2019 Number Theory

Day 3: Quadratic Residues

We concluded our session last week with a brief introduction to Quadratic Residues. That brief introduction
is repeated below, and is built on from there.

Quadratic Residues: An Introduction

First, recall from the Problem Set 2 that Z∗
p = {1, 2, 3..., p− 1}. That is, every non-zero element of Zp is

invertible! We’ll focus our treatment to odd primes (i.e. p 6= 2 and is prime) since Z∗
2 = {1} and there’s

nothing interesting happening there.

Definition: Let p be an odd prime and let a ∈ Z∗
p. We say a is a quadratic residue modulo p if there

exists an element x ∈ Z∗
p such that x2 ≡ a (mod p). That is, a is a square modulo p.

In Problem Set 1 you were asked to analyze squares modulo different values of n. Let’s take a look at
the squares (and non-squares) modulo primes starting at p = 5. For brevity, we’ll truncate x2 (mod 5) as
x2 (5).

Z5 Z7

x 1 2 3 4

x2 (5) 1 4 4 1

x 1 2 3 4 5 6

x2 (7) 1 4 2 2 4 1

squares: 1, 4 squares: 1, 2, 4

non-squares: 2, 3 non-squares: 3, 5, 6

There are a few patterns at play here. For the moment, we’ll focus on the fact that values of x2 repeat

in reverse order after passing
p− 1

2
. Indeed, modulo 5, we have −1 ≡ 4 (mod 5) and −2 ≡ 3 (mod 5).

Modulo 7, we have −1 ≡ 6 (mod 7), −2 ≡ 5 (mod 7), and −3 ≡ 4 (mod 7). In general, it makes sense
that (−x)2 ≡ x2 (mod n) as (−x)2 = x2 in the integers themselves! Thus, we can consider fewer values to
build these tables. Let’s do this again for Z11 and Z13.

Z11 Z13

x ±1 ±2 ±3 ±4 ±5

x2 (11) 1 4 9 5 3

x ±1 ±2 ±3 ±4 ±5 ±6

x2 (13) 1 4 9 3 12 10

squares: 1, 3, 4, 5, 9 squares: 1, 3, 4, 9, 10, 12

non-squares: 2, 6, 7, 8, 10 non-squares: 2, 5, 6, 7, 8, 11

A couple of patterns are emerging from these tables. These patterns hold true for general odd primes p.

1. In Z∗
p, exactly half of the elements are squares/residues. The other half are not.
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2. Every square in Z∗
p has exactly 2 distinct square roots.

The first result is left for the exercises in Problem Set 3. The second result requires the following theorem
to prove:

Theorem: Let a, b ∈ Z. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).

Proof: If a ≡ 0 (mod p), then the result is clear as 0b ≡ 0 (mod p). Suppose instead that a 6≡ 0 (mod p).
Then a−1 (mod p) exists in Z∗

p. Our hypothesis is that ab ≡ 0 (mod p), so we can start with this congruence
and then multiply it by a−1. We have

ab ≡ 0 (mod p)

⇒ a−1 (ab) ≡ a−1 · 0 (mod p)

⇒ (a−1a)b ≡ 0 (mod p)

⇒ 1b ≡ 0 (mod p)

⇒ b ≡ 0 (mod p). �

Remarks:

(i) This is also a key property of prime numbers. If a, b ∈ Z and p ∈ Z is a prime number, then p | (ab)
if and only if p | a or p | b.

(ii) The above theorem is false for all composite numbers. For example, 3 · 4 ≡ 0 (mod 12).

Theorem 2: Let p be an odd prime and suppose that a ∈ Z∗
p is a residue modulo p. Then there are

exactly two distinct solutions to x2 ≡ a (mod p). Moreover, if x2 ≡ y2 ≡ a (mod p), then x ≡ ±y (mod p).

Proof: Suppose that x2 ≡ a (mod p). Let y also be a square root of a in Z∗
p, so y2 ≡ a (mod p). Therefore,

we have

x2 − y2 ≡ a− a ≡ 0 (mod p)

⇒ (x− y)(x + y) ≡ 0 (mod p)

⇒ x− y ≡ 0 (mod p) or x + y ≡ 0 (mod p)

⇒ x ≡ y (mod p) or x ≡ −y (mod p).

Therefore, if x and y are two square roots of a modulo p, then it must be the case that x ≡ ±y (mod p).
As p is odd, we know that x 6≡ −x (mod p) when x ∈ Z∗

p, thus our result holds. �

Now we can break for Problem Set 3.
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Legendre Symbols and Quadratic Reciprocity

Definition: Let a be an integer and let p be an odd prime. We define the Legendre symbol as

(
a

p

)
=


0, gcd(a, p) > 1,

1, if a is a quadratic residue modulo p,

−1, if a is not a quadratic residue modulo p.

Note: This notation is not to be confused with the ratio
a

p
∈ Q.

Before listing some properties of the Legendre Symbol, a pre-requisite result in establishing some of the
rules:

Theorem 3: Fermat’s Little Theorem! Let a ∈ Z∗
p. Then ap−1 ≡ 1 (mod p).

Properties of the Legendre Symbol:

1) It’s multiplicative!

(
ab

p

)
=

(
a

p

)(
b

p

)

2) Euler’s Criterion:

(
a

p

)
≡ a

p−1
2 (mod p)

Remark: Can prove a
p−1
2 ≡ ±1 (mod p) using Fermat’s Little Theorem and difference of squares.

3) Law of Quadratic Reciprocity: Let p and q be distinct odd primes. Then(
q

p

)
=

(
p

q

)(
− 1

) p−1
2

· q−1
2

The Law of Quadratic Reciprocity is an astounding one! It directly relates the question of whether or not√
p exists in Z∗

q to the existence of
√
q in Z∗

p. Gauss was the first mathematician to successfully prove this
result, and produced six unique proofs of it. To date, there are over 240 unique proofs!

Let’s demonstrate the utility of the reciprocity law.

Example: Is 5 a square modulo 31? We now have three methods to answer this question.

Method 1: Check the square of every integer modulo 31.

We’ve done this in the past

(
check n2 for 1 ≤ n ≤ p− 1

2

)
. As the modulus grows in size, this

method becomes very inefficient. We won’t use this again.
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Method 2: Use Euler’s Criterion. We know

(
5

31

)
≡ 5

31−1
2 ≡ 515 (mod 31). Ouch! There are ways of

simplifying this without as much effort as computing the product of 5 with itself fifteen times,
but they rely on understanding notions of primitive elements and Euler’s totient function. Both
are worth looking up, but we aren’t equipped with these tools yet.

Method 3: Use Quadratic Reciprocity! We’ll do this in one line!(
5

31

)
=

(
31

5

)(
− 1

) 5−1
2

· 31−1
2

=

(
1

5

)
(−1)30 = 1 · 1 = 1.

Therefore, 5 is a square modulo 31. �

Note:

(
31

5

)
=

(
1

5

)
as 31 ≡ 1 (mod 5). This is where Quadratic Reciprocity obtains its utility! We can

use this property to continue to reduce the Legendre symbol until it is manageable.

To compute Legendre symbols involving even numbers, the next theorem will be of great use.

Theorem 4: Let p be an odd prime. Then

(
2

p

)
=

1, if p ≡ ±1 (mod 8),

−1, if p ≡ ±3 (mod 8).

Example: Is 6 a square modulo 31? Let’s use reciprocity again.(
6

31

)
=

(
2

31

)
·
(

3

31

)
Legendre symbol is multiplicative

= 1 ·
(

31

3

)(
− 1

) 3−1
2

· 31−1
2

=

(
1

3

)
· (−1)15 = 1 · −1 = −1.

No, 6 is not a square modulo 31. �

And with that, we’re ready for Problem Set 4!
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