Problem Set 3: Quadratic Residues Part 1

14) (a) List all of the squares and non-squares in \mathbb{Z}_{13} and \mathbb{Z}_{19}.
(b) For primes $p \in\{7,11,13,17,19\}$, which ones have -1 as a square in \mathbb{Z}_{p} ?
(c) Which of the primes $p \in\{7,11,13,17,19\}$ can be written as $x^{2}+y^{2}$ for non-zero $x, y \in \mathbb{Z}$?
(d) Any pattern connecting parts (b) and (c)?
15) (a) Let p be an odd prime. Solve $x^{2} \equiv 1(\bmod p)$.
(b) Let $x \in \mathbb{Z}_{p}^{*}$ where $x \not \equiv \pm 1(\bmod p)$. Why is $x^{-1} \not \equiv x(\bmod p)$?
(c) Using parts (a) and (b) above, prove the following theorem:

Wilson's Theorem: If $p \in \mathbb{Z}$ is a prime, then $(p-1)!\equiv-1(\bmod p)$.
(d) For $p \equiv 1(\bmod 4)$, set $n=\frac{p-1}{2}$. Show that $(n!)^{2} \equiv-1(\bmod p)$ so that you can conclude -1 is a square modulo p.
16) (a) For each prime $p<43$, determine whether or not p can be written in the form $x^{2}+3 y^{2}$ for positive integers x and y.
(b) For each prime $p<43$, determine whether or not -3 is a square modulo p.
(c) Any pattern connecting parts (a) and (b)?
(d) Can you find a similar connection for primes p which can be written in the form $x^{2}+5 y^{2}$ for positive integers x and y, and whether or not -5 is a square modulo p ? Try for primes $p<110$.
17) (a) Prove that \mathbb{Z}_{p}^{*} has exactly $\frac{p-1}{2}$ quadratic residues.
(b) Why does \mathbb{Z}_{p}^{*} have the same number of quadratic residues as quadratic non-residues?

Problem Set 4: Quadratic Residues Part 2

18) Use Euler's Criterion to compute $\left(\frac{3}{13}\right)$ by hand. Then use Quadratic Reciprocity to compute it. Which route was nicer?
19) Prove that $\left(\frac{-1}{p}\right)= \begin{cases}1, & p \equiv 1(\bmod 4), \\ -1, & p \equiv 3(\bmod 4) .\end{cases}$
20) Suppose that p and q are distinct odd primes. Prove the following equivalent formulation of the law of Quadratic Reciprocity:

$$
\left(\frac{p}{q}\right)= \begin{cases}\left(\frac{q}{p}\right), & p \equiv 1(\bmod 4) \text { or } q \equiv 1(\bmod 4) \\ -\left(\frac{q}{p}\right), & p \equiv q \equiv 3(\bmod 4)\end{cases}
$$

21) (a) Is 30 a square modulo 101 ?
(b) Is 105 a square modulo 229 ?
(c) Is 70 a square modulo 149 ?
22) Prove that the Legendre symbol is multiplicative using Euler's Criterion.
23) Let p be an odd prime. Prove that if $a, b \in \mathbb{Z}_{p}^{*}$ are non-squares modulo p, then $a b$ is a square modulo p.
24) (a) Let $p \geq 11$ be prime. Prove that $\left(\frac{8}{p}\right)=\left(\frac{2}{p}\right)$.
(b) Let p be a prime, let $a \in \mathbb{Z}_{p}^{*}$ and let k be an odd positive integer. Prove that $\left(\frac{a^{k}}{p}\right)=\left(\frac{a}{p}\right)$.
25) Prove Euler's Criterion.

Hint: Start with the statement of Fermat's Little Theorem and use a difference of squares!

