Problem

The area of one side of an Emmy-Os single-serving cereal box is 96 cm2. The area of another side of the same box is 48 cm2. The area of the top of the box is 32 cm2. What is the volume of the box if the length of each edge is a whole number?
Hints

Hint 1 - Is it possible to draw a diagram of the box?

Hint 2 - If this box is similar in shape to a cereal box, what shape are the faces?
How do you find the area of these faces?

Hint 3 - What are possible lengths and widths for the top of the box, to make an area of 32 cm²?
Which of these possibilities are reasonable?

Hint 4 - Remember that the length of one side must match at least one length of the other side and of the top.
Solution

Since each edge length is a whole number, we examine the possible factors of each of the given areas, each area being the product of two lengths. The possibilities are:

<table>
<thead>
<tr>
<th>Side</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side 1</td>
<td>96 cm²</td>
</tr>
<tr>
<td>Side 2</td>
<td>48 cm²</td>
</tr>
<tr>
<td>Top</td>
<td>32 cm²</td>
</tr>
</tbody>
</table>

Now we need to select three lengths a, b, c which appear in pairs among the products of factors, say, a, b for side 1, b, c for side 2, and c, a for the top. Since the top has the fewest possibilities, it is sensible to start with those. If we select 2×16, then side 2 has to be 2×24 (or 3×16), and side 3 has to be 24×16 (or 2×3), neither of which gives 96 cm². So the top must be 4×8; then side 2 is 4×12 (or 6×8), and side 3 is 8×12 (or 6×4), of which only $8 \times 12 = 96$. So the dimensions of the box are 4 cm by 8 cm by 12 cm, and its volume is $4 \times 8 \times 12 = 384$ cm³.