Problem of the Week
Problem E and Solution
Another Point of Division

Problem
A square has coordinates $A(0, 0)$, $B(-9, 12)$, $C(3, 21)$ and $D(12, 9)$. The line l passes through A and intersects CD at point $T(r, s)$ splitting the square so that the area of square $ABCD$ is three times the area of $\triangle ATD$. Determine the equation of line l.

Solution
Both solutions start by finding the area of square $ABCD$, the area of $\triangle ATD$, the length AD and the length TD. We present the common start to both solutions at this point.

Using the distance formula, $AD = \sqrt{(9 - 0)^2 + (12 - 0)^2} = \sqrt{81 + 144} = \sqrt{225} = 15$, since $AD > 0$.

Therefore, the area of square $ABCD = 15^2 = 225$.

Since the area of square $ABCD$ is three times the area of $\triangle ATD$, area($\triangle ATD$) = $\frac{1}{3} \times$ area(square $ABCD$) = $\frac{1}{3} (225) = 75$.

Since $ABCD$ is a square, $\angle ADC = 90^\circ$. Consider $\triangle ATD$. This triangle is a right-triangle with base $AD = 15$ and height TD.

Using the formula area = base \times height $\div 2$, $\text{area}(\triangle ATD) = \frac{AD \times TD}{2}$.

$75 = \frac{15 \times TD}{2}$

$\therefore TD = 10$

Solution 1
We now calculate the equation of the line that the segment CD lies on.

Since D has coordinates $(12, 9)$ and C has coordinates $(3, 21)$, this line has slope $\frac{21 - 9}{3 - 12} = \frac{12}{-9} = -\frac{4}{3}$.

Since the line has slope $-\frac{4}{3}$ and point $(3, 21)$ lies on the line, we have $\frac{y - 21}{x - 3} = -\frac{4}{3} \implies 3y - 63 = -4x + 12 \implies 3y = -4x + 75 \implies y = -\frac{4}{3}x + 25$.

Since $T(r, s)$ lies on this line, $s = -\frac{4}{3}r + 25$.

Using the distance formula, since $TD = 10$, we have

$\sqrt{(r - 12)^2 + (s - 9)^2} = 10$

$(r - 12)^2 + (s - 9)^2 = 100$

$(r - 12)^2 + \left(\left(-\frac{4}{3}r + 25\right) - 9\right)^2 = 100$, since $s = -\frac{4}{3}r + 25$

$(r - 12)^2 + \left(\frac{4}{3}r + 16\right)^2 = 100$

$r^2 - 24r + 144 + \frac{16}{9}r^2 - \frac{128}{3}r + 256 = 100$
\[
\begin{align*}
\frac{25}{9}r^2 - \frac{200}{3}r + 300 &= 0 \\
\frac{25}{9}(r^2 - 24r + 108) &= 0 \\
r^2 - 24r + 108 &= 0 \\
(r - 6)(r - 18) &= 0 \\
r &= 6, 18
\end{align*}
\]

But \(r = 18 \) lies outside the square. Therefore, \(r = 6 \) and \(s = -\frac{4}{3}(6) + 25 = -8 + 25 = 17 \).

The line \(l \) passes through \(A(0, 0) \) and \(T(6, 17) \), has \(y \)-intercept 0 and slope \(= \frac{17 - 0}{6 - 0} = \frac{17}{6} \).

Therefore, the equation of line \(l \) is \(y = \frac{17}{6}x \) or \(17x - 6y = 0 \).

Solution 2

Since \(TD = 10 \) and \(CD = 15 \), \(CT = CD - TD = 15 - 10 = 5 \).
\(\triangle TDA \) is right-angled so, using the Pythagorean Theorem,
\[
AT^2 = AD^2 + TD^2 \\
(r - 0)^2 + (s - 0)^2 = 15^2 + 10^2 \\
r^2 + s^2 = 325 \tag{1}
\]

Using the distance formula, we can calculate the length of each of \(CT \) and \(TD \),
\[
CT = \sqrt{(r - 3)^2 + (s - 21)^2} \quad \text{and} \quad TD = \sqrt{(r - 12)^2 + (s - 9)^2}
\]

Squaring both sides and simplifying
\[
CT^2 = r^2 - 6r + 9 + s^2 - 42s + 441 \quad \text{and} \quad TD^2 = r^2 - 24r + 144 + s^2 - 18s + 81
\]
Substituting \(CT = 5 \) and \(TD = 10 \),
\[
5^2 = r^2 + s^2 - 6r - 42s + 450 \quad \text{and} \quad 10^2 = r^2 + s^2 - 24r - 18s + 225
\]
Rearranging
\[
6r + 42s = r^2 + s^2 + 425 \quad \text{and} \quad 24r + 18s = r^2 + s^2 + 125
\]
From (1), \(r^2 + s^2 = 325 \) so
\[
6r + 42s = 325 + 425 \quad \text{and} \quad 24r + 18s = 325 + 125
\]
\[
6r + 42s = 750 \tag{2} \quad \text{and} \quad 24r + 18s = 450 \tag{3}
\]

We now have a system of equations. Equation (3) subtract \(4 \times \) equation (2) gives \(-150s = -2550\) and \(s = 17 \) follows. Substituting for \(s \) in (2), we obtain \(r = 6 \).

The line \(l \) passes through \(A(0, 0) \) and \(T(6, 17) \), has \(y \)-intercept 0 and slope \(= \frac{17 - 0}{6 - 0} = \frac{17}{6} \).

Therefore, the equation of line \(l \) is \(y = \frac{17}{6}x \) or \(17x - 6y = 0 \).

For Further Thought:

The point \(U \) is on \(CB \) so that the area of \(\triangle ABU \) = the area of \(\triangle UAT \) = the area of \(\triangle ATD \).

Determine the coordinates of \(U \). By finding \(U \) and \(T \), you will have found two line segments, \(AU \) and \(AT \), that divide square \(ABCD \) into three equal areas.