

Problem of the Week Problem C and Solution
 The Missing Pieces

Problem

The following information is known about $\triangle P Q R$.

- The point S is on side $P R$ and the point T is on side $P Q$.
- The distance from P to S is equal to the distance from T to Q.
- The distance from S to R is equal to the distance from P to T.
- $\angle P R Q=40^{\circ}$ and $\angle P T S=20^{\circ}$.

Determine the value of each of the five other interior angles. That is, determine the values of $\angle R P Q, \angle S T Q, \angle T Q R, \angle R S T$, and $\angle P S T$.

Solution

First, we let $\angle R P Q$ measure $a^{\circ}, \angle S T Q$ measure $b^{\circ}, \angle T Q R$ measure $c^{\circ}, \angle R S T$ measure d°, and $\angle P S T$ measure e°.

Since $\angle P T Q$ is a straight angle, $20+b=180$, and so $b=160$.
Since $P S=T Q$ and $S R=P T$, it follows that $P S+P R=P T+T Q$, and so $P R=P Q$ and $\triangle P Q R$ is isosceles. Therefore $\angle P R Q=\angle P Q R$, and so $c=40$. Since the angles in a triangle sum to 180°, in $\triangle P Q R$,

$$
\begin{aligned}
a+40+c & =180 \\
a+40+40 & =180 \\
a+80 & =180 \\
a & =100
\end{aligned}
$$

Similarly, in $\triangle P S T$,

$$
\begin{aligned}
a+e+20 & =180 \\
100+e+20 & =180 \\
120+e & =180 \\
e & =60
\end{aligned}
$$

Since $\angle P S R$ is a straight angle,

$$
\begin{aligned}
e+d & =180 \\
60+d & =180 \\
d & =120
\end{aligned}
$$

We have determined the value of all the other five interior angles.
$\angle R P Q=a^{\circ}=100^{\circ}, \angle S T Q=b^{\circ}=160^{\circ}, \angle T Q R=c^{\circ}=40^{\circ}$, $\angle R S T=d^{\circ}=120^{\circ}$, and $\angle P S T=e^{\circ}=60^{\circ}$.

