

Problem of the Week Problem C and Solution The Missing Pieces

Problem

The following information is known about $\triangle PQR$.

- The point S is on side PR and the point T is on side PQ.
- The distance from P to S is equal to the distance from T to Q.
- The distance from S to R is equal to the distance from P to T.
- $\angle PRQ = 40^{\circ}$ and $\angle PTS = 20^{\circ}$.

Determine the value of each of the five other interior angles. That is, determine the values of $\angle RPQ$, $\angle STQ$, $\angle TQR$, $\angle RST$, and $\angle PST$.

Solution

First, we let $\angle RPQ$ measure a° , $\angle STQ$ measure b° , $\angle TQR$ measure c° , $\angle RST$ measure d° , and $\angle PST$ measure e° .

Since $\angle PTQ$ is a straight angle, 20 + b = 180, and so b = 160.

Since PS = TQ and SR = PT, it follows that PS + PR = PT + TQ, and so PR = PQ and $\triangle PQR$ is isosceles. Therefore $\angle PRQ = \angle PQR$, and so c = 40. Since the angles in a triangle sum to 180° , in $\triangle PQR$,

$$a + 40 + c = 180$$

 $a + 40 + 40 = 180$
 $a + 80 = 180$
 $a = 100$

Similarly, in $\triangle PST$,

$$a + e + 20 = 180$$
$$100 + e + 20 = 180$$
$$120 + e = 180$$
$$e = 60$$

Since $\angle PSR$ is a straight angle,

$$e + d = 180$$

$$60 + d = 180$$

$$d = 120$$

We have determined the value of all the other five interior angles. $\angle RPQ = a^{\circ} = 100^{\circ}, \ \angle STQ = b^{\circ} = 160^{\circ}, \ \angle TQR = c^{\circ} = 40^{\circ}, \ \angle RST = d^{\circ} = 120^{\circ}, \text{ and } \ \angle PST = e^{\circ} = 60^{\circ}.$

