

Problem of the Week Problem C and Solution
 Divisors and Number

Problem

Your friend Cael always likes challenging you. One challenge is called "Divisors and Number". Cael will tell you certain facts about the divisors of a number and then challenge you to find the number. Here is Cael's challenge.
"I am looking for a positive integer with exactly eight positive divisors, two of which are 21 and 33."

Determine Cael's number.

Solution

Let n represent the number we are looking for.
We know that four of the positive divisors of n are $1,21,33$, and n. In our solution we will first find the remaining four positive divisors and then determine n.

Since 21 is a divisor of n and $21=3 \times 7$, then 3 and 7 must also be divisors of n. Since 33 is a divisor of n and $33=3 \times 11$, then 11 must also be a divisor of n. Since 7 is a divisor of n and 11 is a divisor of n, and since 7 and 11 have no common divisors, then $7 \times 11=77$ must also be a divisor of n.
We have found all eight of the positive divisors of the unknown number. The positive divisors are $1,3,7,11,21,33,77$, and n. We now need to determine n. From the list of divisors, we can see that the prime factors of n are 3,7 , and 11 . It follows that $n=3 \times 7 \times 11=231$.

Therefore, Cael's number is 231 .

