

Problem of the Week Problem D and Solution
 There are Two Sides

Problem

A median is a line segment drawn from the vertex of a triangle to the midpoint of the opposite side.

In $\triangle A B C$, a median is drawn from vertex A, meeting side $B C$ at point D. The length of $B D$ is 6 cm and the length of the median $A D$ is 13 cm .

The area of $\triangle A B C$ is $72 \mathrm{~cm}^{2}$. Determine the lengths of sides $A B$ and $A C$.

Solution

First we will draw the altitude from vertex A, meeting side $B C$ at point E. Let h be the length of the altitude $A E$. Let x be the length of $D E$. Since $A D$ is a median, $D C=B D=6$. Since E is on $D C$ and the length of $D E$ is x, the length of $E C$ is $6-x$.

We know the area of $\triangle A B C$ is $72 \mathrm{~cm}^{2}$. Also, since $B D=D C=6 \mathrm{~cm}$, it follows that $B C=12 \mathrm{~cm}$. Thus,

$$
\begin{aligned}
\frac{B C \times A E}{2} & =72 \\
\frac{12 h}{2} & =72 \\
h & =12
\end{aligned}
$$

Since $\triangle A E D$ is right-angled, we can use the Pythagorean Theorem as follows.

$$
\begin{aligned}
D E^{2}+A E^{2} & =A D^{2} \\
x^{2}+12^{2} & =13^{2} \\
x^{2} & =13^{2}-12^{2} \\
x^{2} & =169-144=25
\end{aligned}
$$

Since $x>0$, it follows that $x=5 \mathrm{~cm}$. Thus, $B E=6+x=6+5=11 \mathrm{~cm}$, and $E C=6-x=6-5=1 \mathrm{~cm}$.

Since $\triangle A E B$ is right-angled, we can use the Pythagorean Theorem as follows.

$$
\begin{aligned}
A E^{2}+B E^{2} & =A B^{2} \\
12^{2}+11^{2} & =A B^{2} \\
A B^{2} & =144+121=265
\end{aligned}
$$

Since $A B>0$, it follows that $A B=\sqrt{265} \mathrm{~cm}$.
Since $\triangle A E C$ is right-angled, we can use the Pythagorean Theorem as follows.

$$
\begin{aligned}
A E^{2}+E C^{2} & =A C^{2} \\
12^{2}+1^{2} & =A C^{2} \\
A C^{2} & =144+1=145
\end{aligned}
$$

Since $A C>0$, it follows that $A C=\sqrt{145} \mathrm{~cm}$.
Therefore, the lengths of sides $A B$ and $A C$ are $\sqrt{265} \mathrm{~cm}$ and $\sqrt{145} \mathrm{~cm}$, respectively. These are approximately equal to 16.3 cm and 12.0 cm .

