

Problem of the Week Problem D and Solution Many Ways to Get There

Problem

Rectangle PQRS has QR = 4 and RS = 7. $\triangle TRU$ is inscribed in rectangle PQRS with T on PQ such that PT = 4, and U on PS such that SU = 1.

Determine the value of $\angle RUS + \angle PUT$. There are many ways to solve this problem. After you have solved it, see if you can solve it a different way.

Solution

Since PQRS is a rectangle, PQ = RS, so TQ = 3. Similarly PS = QR, so PU = 3.

We will now present three different solutions. The first uses the Pythagorean Theorem, the second uses congruent triangles, and the third uses basic trigonometry.

Solution 1

Since $\triangle UPT$ has a right angle at P, we can apply the Pythagorean Theorem to find that $UT^2 = PU^2 + PT^2 = 3^2 + 4^2 = 25$. Therefore, UT = 5, since UT > 0.

Similarly, since $\triangle TQR$ has a right angle at Q, we can apply the Pythagorean Theorem to find that TR = 5.

Since $\triangle RSU$ has a right angle at S, we can apply the Pythagorean Theorem to find that $UR^2 = RS^2 + SU^2 = 7^2 + 1^2 = 50$ and so $UR = \sqrt{50}$, since UR > 0.

In $\triangle TRU$, notice that $UT^2 + TR^2 = 5^2 + 5^2 = 25 + 25 = 50 = UR^2$. Therefore, $\triangle TRU$ is a right-angled triangle, with $\angle UTR = 90^\circ$. Also, since UT = TR = 5, $\triangle TRU$ is an isosceles right-angled triangle, and so $\angle TUR = \angle TRU = 45^\circ$.

The angles in a straight line sum to 180° , so we have $\angle RUS + \angle TUR + \angle PUT = 180^{\circ}$.

Since $\angle TUR = 45^{\circ}$, this becomes $\angle RUS + 45^{\circ} + \angle PUT = 180^{\circ}$, and so $\angle RUS + \angle PUT = 180^{\circ} - 45^{\circ} = 135^{\circ}$. Therefore, $\angle RUS + \angle PUT = 135^{\circ}$.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Solution 2

Looking at $\triangle UPT$ and $\triangle TQR$, we have PT = QR = 4, PU = TQ = 3, and $\angle UPT = \angle TQR = 90^{\circ}$. Therefore $\triangle UPT \cong \triangle TQR$ by side-angle-side triangle congruency. From the triangle congruency, it follows that UT = TR, $\angle QTR = \angle PUT$, and $\angle TRQ = \angle PTU$. Let $\angle QTR = \angle PUT = x$ and $\angle TRQ = \angle PTU = y$.

Since the angles in a triangle sum to 180°, in right-angled $\triangle UPT$, $\angle PUT + \angle PTU = 90^{\circ}$. That is, $x + y = 90^{\circ}$.

Since the angles in a straight line sum to 180° , $\angle PTU + \angle UTR + \angle QTR = 180^{\circ}$. That is, $y + \angle UTR + x = 180^{\circ}$. Substituting $x + y = 90^{\circ}$, we obtain $90^{\circ} + \angle UTR = 180^{\circ}$, and $\angle UTR = 90^{\circ}$ follows.

Since UT = TR and $\angle UTR = 90^{\circ}$, $\triangle TRU$ is an isosceles right-angled triangle and so $\angle TUR = \angle TRU = 45^{\circ}$.

The angles in a straight line sum to 180° , so we have $\angle RUS + \angle TUR + \angle PUT = 180^{\circ}$.

Since $\angle TUR = 45^{\circ}$, this becomes $\angle RUS + 45^{\circ} + \angle PUT = 180^{\circ}$, and so $\angle RUS + \angle PUT = 180^{\circ} - 45^{\circ} = 135^{\circ}$. Therefore, $\angle RUS + \angle PUT = 135^{\circ}$.

Solution 3

Using basic trigonometry, from right-angled $\triangle RSU$, we have $\tan \alpha = \frac{7}{1} = 7$, and so $\alpha = \tan^{-1}(7)$. Similarly, from right-angled $\triangle UPT$, we have $\tan \beta = \frac{4}{3}$, and so $\beta = \tan^{-1}\left(\frac{4}{3}\right)$. Then $\angle RUS + \angle PUT = \alpha + \beta = \tan^{-1}(7) + \tan^{-1}\left(\frac{4}{3}\right) = 135^{\circ}$. Therefore, $\angle RUS + \angle PUT = 135^{\circ}$.

This third solution is very efficient and concise. However, some of the beauty is lost as a result of this direct approach.