

Problem of the Week Problem D and Solution Many Ways to Get There

## Problem

Rectangle $P Q R S$ has $Q R=4$ and $R S=7 . \triangle T R U$ is inscribed in rectangle $P Q R S$ with $T$ on $P Q$ such that $P T=4$, and $U$ on $P S$ such that $S U=1$.
Determine the value of $\angle R U S+\angle P U T$. There are many ways to solve this problem. After you have solved it, see if you can solve it a different way.

## Solution

Since $P Q R S$ is a rectangle, $P Q=R S$, so $T Q=3$. Similarly $P S=Q R$, so $P U=3$.


We will now present three different solutions. The first uses the Pythagorean Theorem, the second uses congruent triangles, and the third uses basic trigonometry.

## Solution 1

Since $\triangle U P T$ has a right angle at $P$, we can apply the Pythagorean Theorem to find that $U T^{2}=P U^{2}+P T^{2}=3^{2}+4^{2}=25$. Therefore, $U T=5$, since $U T>0$.

Similarly, since $\triangle T Q R$ has a right angle at $Q$, we can apply the Pythagorean Theorem to find that $T R=5$.

Since $\triangle R S U$ has a right angle at $S$, we can apply the Pythagorean Theorem to find that $U R^{2}=R S^{2}+S U^{2}=7^{2}+1^{2}=50$ and so $U R=\sqrt{50}$, since $U R>0$.
In $\triangle T R U$, notice that $U T^{2}+T R^{2}=5^{2}+5^{2}=25+25=50=U R^{2}$. Therefore, $\triangle T R U$ is a right-angled triangle, with $\angle U T R=90^{\circ}$. Also, since $U T=T R=5, \triangle T R U$ is an isosceles right-angled triangle, and so $\angle T U R=\angle T R U=45^{\circ}$.
The angles in a straight line sum to $180^{\circ}$, so we have $\angle R U S+\angle T U R+\angle P U T=180^{\circ}$.
Since $\angle T U R=45^{\circ}$, this becomes $\angle R U S+45^{\circ}+\angle P U T=180^{\circ}$, and so
$\angle R U S+\angle P U T=180^{\circ}-45^{\circ}=135^{\circ}$. Therefore, $\angle R U S+\angle P U T=135^{\circ}$.

## Solution 2

Looking at $\triangle U P T$ and $\triangle T Q R$, we have $P T=Q R=4, P U=T Q=3$, and $\angle U P T=\angle T Q R=90^{\circ}$. Therefore $\triangle U P T \cong \triangle T Q R$ by side-angle-side triangle congruency. From the triangle congruency, it follows that $U T=T R, \angle Q T R=\angle P U T$, and $\angle T R Q=\angle P T U$. Let $\angle Q T R=\angle P U T=x$ and $\angle T R Q=\angle P T U=y$.


Since the angles in a triangle sum to $180^{\circ}$, in right-angled $\triangle U P T, \angle P U T+\angle P T U=90^{\circ}$. That is, $x+y=90^{\circ}$.

Since the angles in a straight line sum to $180^{\circ}, \angle P T U+\angle U T R+\angle Q T R=180^{\circ}$. That is, $y+\angle U T R+x=180^{\circ}$. Substituting $x+y=90^{\circ}$, we obtain $90^{\circ}+\angle U T R=180^{\circ}$, and $\angle U T R=90^{\circ}$ follows.

Since $U T=T R$ and $\angle U T R=90^{\circ}, \triangle T R U$ is an isosceles right-angled triangle and so $\angle T U R=\angle T R U=45^{\circ}$.

The angles in a straight line sum to $180^{\circ}$, so we have $\angle R U S+\angle T U R+\angle P U T=180^{\circ}$.
Since $\angle T U R=45^{\circ}$, this becomes $\angle R U S+45^{\circ}+\angle P U T=180^{\circ}$, and so $\angle R U S+\angle P U T=180^{\circ}-45^{\circ}=135^{\circ}$. Therefore, $\angle R U S+\angle P U T=135^{\circ}$.

## Solution 3

Let $\angle R U S=\alpha$ and $\angle P U T=\beta$.


Using basic trigonometry, from right-angled $\triangle R S U$, we have $\tan \alpha=\frac{7}{1}=7$, and so $\alpha=\tan ^{-1}(7)$. Similarly, from right-angled $\triangle U P T$, we have $\tan \beta=\frac{4}{3}$, and so $\beta=\tan ^{-1}\left(\frac{4}{3}\right)$. Then $\angle R U S+\angle P U T=\alpha+\beta=\tan ^{-1}(7)+\tan ^{-1}\left(\frac{4}{3}\right)=135^{\circ}$.

Therefore, $\angle R U S+\angle P U T=135^{\circ}$.
This third solution is very efficient and concise. However, some of the beauty is lost as a result of this direct approach.

