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1. (a) Evaluating,
102 − 92

10 + 9
=

100− 81

19
=

19

19
= 1.

Alternatively, we could factor 102 − 92 as a difference of squares to obtain

102 − 92

10 + 9
=

(10 + 9)(10− 9)

10 + 9
= 10− 9 = 1

noting that 10 + 9, which we divided from the numerator and denominator, is not equal
to 0.

(b) Since
x+ 1

x+ 4
= 4, then x+ 1 = 4(x+ 4) and so x+ 1 = 4x+ 16 or 3x = −15.

Therefore, 3x+ 8 = −15 + 8 = −7.
Alternatively, we could note that since 3x = −15, then x = −5.
Thus, 3x+ 8 = 3(−5) + 8 = −15 + 8 = −7.

(c) Since f(x) = 2x− 1, then f(3) = 2(3)− 1 = 5.
Therefore, (f(3))2 + 2(f(3)) + 1 = 52 + 2(5) + 1 = 25 + 10 + 1 = 36.
Alternatively, we could note that since f(x) = 2x− 1, then

(f(x))2 + 2(f(x)) + 1 = (f(x) + 1)2 = (2x− 1 + 1)2 = 4x2

and so (f(3))2 + 2(f(3)) + 1 = 4(32) = 36.

2. (a) Since
√
a+
√
a = 20, then 2

√
a = 20 or

√
a = 10, and so a = 102 = 100.

(b) Let the radius of the larger circle be r.
Since the radius of the smaller circle is 1, then its area is π · 12 = π.
Since the area between the circles is equal to the area of the smaller circle, then the area
of the larger circle is π + π = 2π.
Thus, πr2 = 2π or r2 = 2. Since r > 0, then r =

√
2.

(c) Since 30 students had an average mark of 80, then the sum of the marks of these 30 stu-
dents was 30 · 80 = 2400.
After 2 students dropped the class, there were 28 students left. Their average mark was
82.
Thus, the sum of the marks of the remaining 28 students was 28 · 82 = 2296.
Therefore, the sum of the marks of the 2 students who dropped the class was 2400− 2296

or 104, and so their average mark was
104

2
= 52.
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3. (a) Solution 1
Join AD.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AB = BC = 2.
Since 4ABC is equilateral, then ∠ABC = ∠ACB = 60◦.
Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.

A

B C D
2 2

2

60º 120º

Since AC = CD, then 4ACD is isosceles with ∠CDA = ∠CAD.
Each of these angles equals 1

2
(180◦ − ∠ACD) = 1

2
(180◦ − 120◦) = 30◦.

Since ∠ABD = 60◦ and ∠ADB = 30◦, then ∠BAD = 90◦ and 4DBA is a 30◦-60◦-90◦

triangle.
Therefore, AD =

√
3AB = 2

√
3.

Solution 2
Join AD.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AC = CD = 2.
Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.
By the cosine law in 4ACD,

AD2 = AC2 + CD2 − 2(AC)(CD) cos(∠ACD)

= 22 + 22 − 2(2)(2) cos 120◦

= 4 + 4− 8(−1
2
)

= 12

Since AD2 = 12 and AD > 0, then AD =
√

12 = 2
√

3.

Solution 3
Join AD and drop a perpendicular from A to E on BC.
Since BC = CD and BD = 4, then BC = CD = 2. Also, AB = BC = 2.
Since 4ABC is equilateral, then ∠ABC = ∠ACB = 60◦.
Since ∠ABC = 60◦ and ∠AEB = 90◦, then 4ABE is a 30◦-60◦-90◦ triangle.
Thus, AE =

√
3
2
AB =

√
3.

Since ∠ACB = 60◦, then ∠ACD = 180◦ − ∠ACB = 180◦ − 60◦ = 120◦.

A

B C D
2

2

60º 120º
E

Since AC = CD, then 4ACD is isosceles with ∠CDA = ∠CAD.
Each of these angles equals 1

2
(180◦ − ∠ACD) = 1

2
(180◦ − 120◦) = 30◦.

But 4DAE is then a 30◦-60◦-90◦ triangle, so AD = 2AE = 2
√

3.
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(b) Points N(5, 3) and P (5, c) lie on the same vertical line. We can consider NP as the base
of 4MNP . Suppose that the length of this base is b.
The corresponding height of 4MNP is the distance from M(1, 4) to the line through N
and P . Since M lies on the vertical line x = 1 and N and P lie on the vertical line x = 5,
then the height is h = 4.

y

x

M (1, 4)
N (5, 3)

P1(5, c1)

P2(5, c2)

Since the area of 4MNP is 14, then 1
2
bh = 14.

Since h = 4, then 1
2
b(4) = 14 or 2b = 14 and so b = 7.

Therefore, P (5, c) is a distance of 7 units away from N(5, 3).
Since NP is a vertical line segment, then c = 3 + 7 or c = 3− 7, and so c = 10 or c = −4.
The sum of these two values is 10 + (−4) = 6.
(We could also have noted that, since the two values of c will be symmetric about y = 3,
then the average of their values is 3 and so the sum of their values is 2 · 3 = 6.)

4. (a) To find the y-intercept, we set x = 0 and obtain

y = (−1)(−2)(−3)− (−2)(−3)(−4) = (−6)− (−24) = 18 .

To find the x-intercepts, we first simplify using common factors:

y = (x−1)(x−2)(x−3)−(x−2)(x−3)(x−4) = (x−2)(x−3) ((x− 1)− (x− 4)) = 3(x−2)(x−3)

To find the x-intercepts, we set y = 0 and obtain 3(x − 2)(x − 3) = 0 which gives x = 2
or x = 3.
Therefore, the y-intercept is 18 and the x-intercepts are 2 and 3.

(b) To find the points of intersection of the graphs with equations y = x3 − x2 + 3x − 4 and
y = ax2 − x− 4, we equate values of y and solve for x.
We want to find all values of a for which there are exactly two values of x which are
solutions to x3 − x2 + 3x− 4 = ax2 − x− 4.
Solving, we obtain

x3 − x2 + 3x− 4 = ax2 − x− 4

x3 − x2 − ax2 + 4x = 0

x3 − (a+ 1)x2 + 4x = 0

x(x2 − (a+ 1)x+ 4) = 0

Therefore x = 0 or x2 − (a+ 1)x+ 4 = 0.
Note that x = 0 is not a solution to x2− (a+ 1)x+ 4 = 0, since when x = 0 is substituted
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into the left side, we obtain 4 and not 0.
Therefore, for there to be exactly two points of intersection between the two graphs, the
quadratic equation x2 − (a+ 1)x+ 4 = 0 must have exactly one solution.
Setting the discriminant equal to 0 (to obtain a single root), we obtain (a+1)2−4(1)(4) = 0
or (a+ 1)2 = 16, which gives a+ 1 = ±4.
If a+ 1 = 4, then a = 3; if a+ 1 = −4, then a = −5.
Therefore, the values of a for which the graphs with equations y = x3 − x2 + 3x− 4 and
y = ax2 − x− 4 intersect at exactly two points are a = 3 and a = −5.
(We can check that y = x3−x2 + 3x− 4 and y = 3x2−x− 4 intersect exactly when x = 0
and x = 2, and that y = x3 − x2 + 3x − 4 and y = −5x2 − x − 4 intersect exactly when
x = 0 and x = −2.)

5. (a) Suppose that AB = AC = DE = x.
Since DB = 9, then AD = x− 9.
Since EC = 8, then AE = x− 8.
By the Pythagorean Theorem in 4ADE,

AD2 + AE2 = DE2

(x− 9)2 + (x− 8)2 = x2

x2 − 18x+ 81 + x2 − 16x+ 64 = x2

x2 − 34x+ 145 = 0

(x− 5)(x− 29) = 0

Therefore, x = 5 or x = 29.
Since x ≥ 9 (because AB ≥ DB = 9), then DE = 29.

(b) Since each list contains 6 consecutive positive integers and the smallest integers in the lists
are a and b, then the positive integers in the first list are a, a+ 1, a+ 2, a+ 3, a+ 4, a+ 5
and the positive integers in the second list are b, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5.
Note that 1 ≤ a < b.
We first determine the pairs (a, b) for which 49 will appear in the third list, then determine
which of these pairs give a third list that contains no multiple of 64, and then finally keep
only those pairs for which there is a number in the third list larger than 75.

The first bullet tells us that 49 is the product of an integer in the first list and an integer
in the second list.
Since 49 = 72 and 7 is prime, then these integers are either 1 and 49 or 7 and 7.
If 1 is in one of the lists, then either a = 1 or b = 1. Since 1 ≤ a < b, then it must be that
a = 1.
If 49 is in the second list, then one of b, b + 1, b + 2, b + 3, b + 4, b + 5 equals 49, and so
44 ≤ b ≤ 49.
Therefore, for 1 and 49 to appear in the two lists, then (a, b) must be one of

(1, 49), (1, 48), (1, 47), (1, 46), (1, 45), (1, 44) .

If 7 appears in the first list, then one of a, a + 1, a + 2, a + 3, a + 4, a + 5 equals 7, so
2 ≤ a ≤ 7. Similarly, if 7 appears in the second list, then 2 ≤ b ≤ 7.
Therefore, for 7 to appear in both lists, then, knowing that a < b, then (a, b) must be one
of

(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7) .
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The second bullet tells us that no pair of numbers in the first and second lists have a
product that is a multiple of 64.
Given that the possible values of a and b are 1, 2, 3, 4, 5, 6, 7, 44, 45, 46, 47, 48, 49, then the
possible integers in the two lists are those integers from 1 to 12, inclusive, and from 44 to
54, inclusive. (For example, if the first number in one list is 7, then the remaining numbers
in this list are 8, 9, 10, 11, 12.)
There is no multiple of 32 or 64 in these lists.
Thus, for a pair of integers from these lists to have a product that is a multiple of 64, one
is a multiple of 4 and the other is a multiple of 16, or both are multiples of 8.
If (a, b) = (1, 48), (1, 47), (1, 46), (1, 45), (1, 44), then 4 appears in the first list and 48 ap-
pears in the second list; these have a product of 192, which is 3 · 64.
If (a, b) = (1, 49), there is a multiple of 4 but not of 8 in the first list, and a multiple of 4
but not of 8 in the second list, so there is no multiple of 64 in the third list.
If (a, b) = (3, 4), (3, 5), (3, 6), (3, 7), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7), then 8 appears in
both lists, so 64 appears in the third list.
If (a, b) = (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), then there is no multiple of 8 or 16 in the first
list and no multiple of 16 in the second list, so there is no multiple of 64 in the third list.
Therefore, after considering the first two bullets, the possible pairs (a, b) are (1, 49), (2, 3),
(2, 4), (2, 5), (2, 6), (2, 7).

The third bullet tells us that there is at least one number in the third list that is larger
than 75.
Given the possible pairs (a, b) are (1, 49), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), the corresponding
pairs of largest integers in the lists are (6, 54), (7, 8), (7, 9), (7, 10), (7, 11), (7, 12).
The corresponding largest integers in the third list are the products of the largest integers
in the two lists; these products are 324, 56, 63, 70, 77, 84, respectively.
Therefore, the remaining pairs (a, b) are (1, 49), (2, 6), (2, 7)

Having considered the three conditions, the possible pairs (a, b) are (1, 49), (2, 6), (2, 7).
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6. (a) We are told that when a, b and c are the numbers in consecutive sectors, then b = ac.
This means that if a and b are the numbers in consecutive sectors, then the number in the

next sector is c =
b

a
. (That is, each number is equal to the previous number divided by

the one before that.)
Starting with the given 2 and 3 and proceeding clockwise, we obtain

2, 3,
3

2
,

3/2

3
=

1

2
,

1/2

3/2
=

1

3
,

1/3

1/2
=

2

3
,

2/3

1/3
= 2,

2

2/3
= 3,

3

2
, . . .

After the first 6 terms, the first 2 terms (2 and 3) reappear, and so the first 6 terms will
repeat again. (This is because each term comes from the previous two terms, so when
two consecutive terms reappear, then the following terms are the same as when these two
consecutive terms appeared earlier.)

Since there are 36 terms in total, then the 6 terms repeat exactly
36

6
= 6 times.

Therefore, the sum of the 36 numbers is 6

(
2 + 3 +

3

2
+

1

2
+

1

3
+

2

3

)
= 6(2+3+2+1) = 48.

(b) We consider two cases: x > −1 (that is, x+ 1 > 0) and x < −1 (that is, x+ 1 < 0). Note
that x 6= −1.

Case 1: x > −1

We take the given inequality 0 <
x2 − 11

x+ 1
< 7 and multiply through by x + 1, which is

positive, to obtain 0 < x2 − 11 < 7x+ 7.
Thus, x2 − 11 > 0 and x2 − 11 < 7x+ 7.
From the first, we obtain x2 > 11 and so x >

√
11 or x < −

√
11.

Since x > −1, then x >
√

11. (Note that −
√

11 < −1.)
From the second, we obtain x2 − 7x − 18 < 0 or (x − 9)(x + 2) < 0. Thus, −2 < x < 9.
(Since y = x2 − 7x− 18 represents a parabola opening upwards, its y-values are negative
between its x-intercepts.)
Since x > −1 and −2 < x < 9, then −1 < x < 9.
Since x >

√
11 and −1 < x < 9, then the solution in this case is

√
11 < x < 9.

Case 2: x < −1

We take the given inequality 0 <
x2 − 11

x+ 1
< 7 and multiply through by x + 1, which is

negative, to obtain 0 > x2 − 11 > 7x+ 7.
Thus, x2 − 11 < 0 and x2 − 11 > 7x+ 7.
From the first, we obtain x2 < 11 and so −

√
11 < x <

√
11.

Since x < −1 and −
√

11 < x <
√

11, then −
√

11 < x < −1.
From the second, we obtain x2 − 7x − 18 > 0 or (x − 9)(x + 2) > 0. Thus, x < −2 or
x > 9. (Since y = x2 − 7x − 18 represents a parabola opening upwards, its y-values are
positive outside its x-intercepts.)
Since x < −1, we obtain x < −2.
Since −

√
11 < x < −1 and x < −2, then the solution in this case is −

√
11 < x < −2.

In summary, the values of x for which 0 <
x2 − 11

x+ 1
< 7 those x with −

√
11 < x < −2 and

those x with
√

11 < x < 9.
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7. (a) Join BE.

A B C

DEF

Since 4FBD is congruent to 4AEC, then FB = AE.
Since 4FAB and 4AFE are each right-angled, share a common side AF and have equal
hypotenuses (FB = AE), then these triangles are congruent, and so AB = FE.
Now BAFE has two right angles at A and F (so AB and FE are parallel) and has equal
sides AB = FE so must be a rectangle.
This means that BCDE is also a rectangle.
Now the diagonals of a rectangle partition it into four triangles of equal area. (Diagonal
AE of the rectangle splits the rectangle into two congruent triangles, which have equal
area. The diagonals bisect each other, so the four smaller triangles all have equal area.)
Since 1

4
of rectangle ABEF is shaded and 1

4
of rectangle BCDE is shaded, then 1

4
of the

total area is shaded. (If the area of ABEF is x and the area of BCDE is y, then the total
shaded area is 1

4
x+ 1

4
y, which is 1

4
of the total area x+ y.)

Since AC = 200 and CD = 50, then the area of rectangle ACDF is 200(50) = 10 000, so
the total shaded area is 1

4
(10 000) = 2500.

(b) Suppose that the arithmetic sequence a1, a2, a3, . . . has first term a and common differ-
ence d.
Then, for each positive integer n, an = a+ (n− 1)d.
Since a1 = a and a2 = a+ d and a1 6= a2, then d 6= 0.

Since a1, a2, a6 form a geometric sequence in that order, then
a2
a1

=
a6
a2

or (a2)
2 = a1a6.

Substituting, we obtain

(a+ d)2 = a(a+ 5d)

a2 + 2ad+ d2 = a2 + 5ad

d2 = 3ad

d = 3a (since d 6= 0)

Therefore, an = a+ (n− 1)d = a+ (n− 1)(3a) = (3n− 2)a for each n ≥ 1.
Thus, a4 = (3(4)− 2)a = 10a, and ak = (3k − 2)a. (Note that a1 = (3(1)− 2)a = a.)
For a1, a4, ak to also form a geometric sequence then, as above, (a4)

2 = a1ak, and so

(10a)2 = (a)((3k − 2)a)

100a2 = (3k − 2)a2

Since d 6= 0 and d = 3a, then a 6= 0.
Since 100a2 = (3k − 2)a2 and a 6= 0, then 100 = 3k − 2 and so 3k = 102 or k = 34.
Checking, we note that a1 = a, a4 = 10a and a34 = 100a which form a geometric sequence
with common ratio 10.
Therefore, the only possible value of k is k = 34.
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8. (a) First, we note that since k is a positive integer, then k ≥ 1.
Next, we note that the given parabola passes through the point (0,−5) as does the given

circle. (This is because if x = 0, then y =
02

k
− 5 = −5 and if (x, y) = (0,−5), then

x2 + y2 = 02 + (−5)2 = 25, so (0,−5) satisfies each of the equations.)
Therefore, for every positive integer k, the two graphs intersect in at least one point.
If y = −5, then x2 + (−5)2 = 25 and so x2 = 0 or x = 0. In other words, there is one
point on both parabola and circle with y = −5, namely (0,−5).
Now, the given circle with equation x2 + y2 = 25 = 52 has centre (0, 0) and radius 5.
This means that the y-coordinates of points on this circle satisfy −5 ≤ y ≤ 5.

To find the other points of intersection, we re-write y =
x2

k
− 5 as ky = x2 − 5k or

x2 = ky + 5k and substitute into x2 + y2 = 25 to obtain

(ky + 5k) + y2 = 25

y2 + ky + (5k − 25) = 0

(y + 5)(y + (k − 5)) = 0

and so y = −5 or y = 5− k.
(We note that since the two graphs intersect at y = −5, then (y + 5) was going to be a
factor of the quadratic equation y2 + ky+ (5k− 25) = 0. If we had not seen this, we could
have used the quadratic formula.)
Therefore, for y = 5− k to give points on the circle, we need −5 ≤ 5− k and 5− k ≤ 5.
This gives k ≤ 10 and k ≥ 0.
Since k is a positive integer, the possible values of k to this point are k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
If k = 1, then y = 5− 1 = 4. In this case, x2 + 42 = 25 or x2 = 9 and so x = ±3.
This gives the two points (3, 4) and (−3, 4) which lie on the parabola and circle.
Consider the three points A(3, 4), B(−3, 4) and C(0,−5).
Now AB is horizontal with AB = 3− (−3) = 6. (This is the difference in x-coordinates.)
The vertical distance from AB to C is 4 − (−5) = 9. (This is the difference in y-
coordinates.)
Therefore, the area of 4ABC is 1

2
(6)(9) = 27, which is a positive integer.

We now repeat these calculations for each of the other values of k by making a table:

k y x = ±
√

25− y2 Base Height Area of triangle
1 4 ±3 3− (−3) = 6 4− (−5) = 9 27
2 3 ±4 4− (−4) = 8 3− (−5) = 8 32

3 2 ±
√

21 2
√

21 7 7
√

21

4 1 ±
√

24 2
√

24 6 6
√

24
5 0 ±5 10 5 25

6 −1 ±
√

24 2
√

24 4 4
√

24

7 −2 ±
√

21 2
√

21 3 3
√

21
8 −3 ±4 8 2 8
9 −4 ±3 6 1 3
10 −5 0

When k = 10, we have y = 5 − k = −5 and x = 0 only, so there is only one point of
intersection.
Finally, the values of k for which there are three points of intersection and for which the
area of the resulting triangle is a positive integer are k = 1, 2, 5, 8, 9.
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(b) Suppose that M is the midpoint of Y Z.
Suppose that the centre of the smaller circle is O and the centre of the larger circle is P .
Suppose that the smaller circle touches XY at C and XZ at D, and that the larger circle
touches XY at E and XZ at F .
Join OC, OD and PE.
Since OC and PE are radii that join the centres of circles to points
of tangency, then OC and PE are perpendicular to XY .
Join XM . Since 4XY Z is isosceles, then XM (which is a median
by construction) is an altitude (that is, XM is perpendicular to
Y Z) and an angle bisector (that is, ∠MXY = ∠MXZ).
Now XM passes through O and P . (Since XC and XD are tan-
gents from X to the same circle, then XC = XD. This means that
4XCO is congruent to 4XDO by side-side-side. This means that
∠OXC = ∠OXD and so O lies on the angle bisector of ∠CXD,
and so O lies on XM . Using a similar argument, P lies on XM .)
Draw a perpendicular from O to T on PE. Note that OT is parallel
to XY (since each is perpendicular to PE) and that OCET is a
rectangle (since it has three right angles).

X

Y Z

O

P

M

C D

E F
T

Consider 4XMY and 4OTP .
Each triangle is right-angled (at M and at T ).
Also, ∠Y XM = ∠POT . (This is because OT is parallel to XY , since both are perpen-
dicular to PE.)
Therefore, 4XMY is similar to 4OTP .

Thus,
XY

YM
=
OP

PT
.

Now XY = a and YM = 1
2
b.

Also, OP is the line segment joining the centres of two tangent circles, so OP = r +R.
Lastly, PT = PE−ET = R−r, since PE = R, ET = OC = r, and OCET is a rectangle.
Therefore,

a

b/2
=

R + r

R− r
2a

b
=

R + r

R− r
2a(R− r) = b(R + r)

2aR− bR = 2ar + br

R(2a− b) = r(2a+ b)

R

r
=

2a+ b

2a− b
(since 2a > b so 2a− b 6= 0, and r > 0)

Therefore,
R

r
=

2a+ b

2a− b
.
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9. Using logarithm rules log(uv) = log u + log v and log(st) = t log s for all u, v, s > 0, the first
equation becomes

(log x)(log y)− 3 log 5− 3 log y − log 8− log x = a

(log x)(log y)− log x− 3 log y − log 8− log 53 = a

(log x)(log y)− log x− 3 log y − log(8 · 125) = a

(log x)(log y)− log x− 3 log y − log(1000) = a

(log x)(log y)− log x− 3 log y − 3 = a

Similarly, the second equation becomes

(log y)(log z)− 4 log 5− 4 log y − log 16− log z = b

(log y)(log z)− 4 log y − log z − 4 log 5− log 16 = b

(log y)(log z)− 4 log y − log z − log(54 · 16) = b

(log y)(log z)− 4 log y − log z − log(10 000) = b

(log y)(log z)− 4 log y − log z − 4 = b

And the third equation becomes

(log z)(log x)− 4 log 8− 4 log x− 3 log 625− 3 log z = c

(log z)(log x)− 4 log x− 3 log z − 4 log 8− 3 log 625 = c

(log z)(log x)− 4 log x− 3 log z − log(84 · 6253) = c

(log z)(log x)− 4 log x− 3 log z − log(212 · 512) = c

(log z)(log x)− 4 log x− 3 log z − 12 = c

Since each of the steps that we have made are reversible, the original system of equations is
equivalent to the new system of equations

(log x)(log y)− log x− 3 log y − 3 = a

(log y)(log z)− 4 log y − log z − 4 = b

(log z)(log x)− 4 log x− 3 log z − 12 = c

Next, we make the substitution X = log x, Y = log y and Z = log z. (This is equivalent to
saying x = 10X , y = 10Y and z = 10Z .)
This transforms the system of equations to the equivalent system

XY −X − 3Y − 3 = a

Y Z − 4Y − Z − 4 = b

XZ − 4X − 3Z − 12 = c

We re-write the first of these three equations as X(Y − 1) − 3Y − 3 = a and then as
X(Y − 1)− 3(Y − 1)− 6 = a and then as (X − 3)(Y − 1) = a+ 6.
In a similar way, we re-write the second and third of these equations to obtain the equivalent
system

(X − 3)(Y − 1) = a+ 6

(Y − 1)(Z − 4) = b+ 8

(X − 3)(Z − 4) = c+ 24
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Next, we make the substitution p = X − 3, q = Y − 1 and r = Z − 4. (This is equivalent to
saying X = p+ 3, Y = q + 1 and Z = r + 4, or x = 10p+3, y = 10q+1 and z = 10r+4.)
This transforms the original system of equations into the equivalent system

pq = a+ 6

qr = b+ 8

pr = c+ 24

We again note that this system of equations is equivalent to the initial system of equations,
and each solution of this system corresponds with a solution of the initial system.

(a) Suppose that a = −4, b = 4 and c = −18.
Then the last version of the system is

pq = 2

qr = 12

pr = 6

Multiplying the three equations together gives p2q2r2 = 2 · 12 · 6 = 144.
Since (pqr)2 = 144, then pqr = ±12.

Therefore, r =
pqr

pq
=
±12

2
= ±6 and p =

pqr

qr
=
±12

12
= ±1 and q =

pqr

pr
=
±12

6
= ±2.

Therefore, the solutions to the last version of the system are (p, q, r) = (1, 2, 6) and
(p, q, r) = (−1,−2,−6).
Converting back to the original variables, we see that the solutions to the original system
when (a, b, c) = (−4, 4,−18) are (x, y, z) = (104, 103, 1010) and (x, y, z) = (102, 10−1, 10−2).

(b) We consider the various possibilities for the product, (a + 6)(b + 8)(c + 24), of the right
sides of the equations in the final form of the system above: whether it is positive, negative
or equal to 0.

Case 1: (a+ 6)(b+ 8)(c+ 24) < 0

As in (a), we multiply the three equations together to obtain (pqr)2 = (a+6)(b+8)(c+24).
Since the left side is at least 0 and the right side is negative, then there are no solutions
to the system of equations in this case.

Case 2: (a+ 6)(b+ 8)(c+ 24) > 0

As in (a), we multiply the three equations together to obtain (pqr)2 = (a+6)(b+8)(c+24).
Since (pqr)2 = (a + 6)(b + 8)(c + 24) and (a + 6)(b + 8)(c + 24) > 0, then
pqr = ±

√
(a+ 6)(b+ 8)(c+ 24).

Since (a+ 6)(b+ 8)(c+ 24) > 0, then
√

(a+ 6)(b+ 8)(c+ 24) is well-defined.
Also, since (a+ 6)(b+ 8)(c+ 24) > 0, then each of a+ 6, b+ 8, c+ 24 is non-zero, so we
can divide by each of these quantities.

As we did in (a), we can solve to obtain

p =
pqr

qr
=
±
√

(a+ 6)(b+ 8)(c+ 24)

b+ 8

q =
pqr

pr
=
±
√

(a+ 6)(b+ 8)(c+ 24)

c+ 24

r =
pqr

pq
=
±
√

(a+ 6)(b+ 8)(c+ 24)

a+ 6
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Since (a + 6)(b + 8)(c + 24) > 0, these are all valid fractions and there are exactly two
triples (p, q, r) that are solutions and so two triples (x, y, z) that are solutions to the
original system.

Case 3: (a+ 6)(b+ 8)(c+ 24) = 0
Suppose that exactly one of a+ 6, b+ 8 and c+ 24 equals 0.
Without loss of generality, suppose that a+ 6 = 0, b+ 8 6= 0 and c+ 24 6= 0.
Since pq = a+ 6 = 0, then p = 0 or q = 0.
In this case, either qr = b+8 or pr = c+24 will equal 0, which contradicts our assumption
that neither b+ 8 nor c+ 24 is 0.
Therefore, it cannot be the case that exactly one of a+ 6, b+ 8 and c+ 24 equals 0.

Suppose next that exactly two of a+ 6, b+ 8 and c+ 24 equal 0.
Without loss of generality, suppose that a+ 6 = b+ 8 = 0 and c+ 24 6= 0.
Since pr = c+ 24 6= 0, then p 6= 0 and r 6= 0.
Since pq = a+ 6 = 0 and qr = b+ 8 = 0 and p 6= 0 and r 6= 0, then q = 0.
In this case, any triple (p, q, r) with q = 0 and pr = c+ 24 6= 0 is a solution to the system
of equations.
Thus, when a+ 6 = b+ 8 = 0 and c+ 24 6= 0 (that is, (a, b, c) = (−6,−8, c) with c 6= 24),

each triple (p, q, r) =

(
p, 0,

c+ 24

p

)
with p 6= 0 is a solution to the system of equations.

Each of these solutions corresponds to a solution to the original system of equations in
(x, y, z), so if (a, b, c) = (−6,−8, c) with c 6= 0, then there are infinite number of solutions
to the system of equations.
Similarly, if (a, b, c) = (−6, b,−24) with b 6= −8 (that is, if p = a+6 = 0 and r = c+24 = 0
but q = b + 8 6= 0) or (a, b, c) = (a,−8,−24) with a 6= −6, then there are infinitely many
solutions (x, y, z) to the original system of equations.
Finally, we must consider the case of a+ 6 = b+ 8 = c+ 24 = 0.
Here, we must solve the system of equations

pq = 0

qr = 0

pr = 0

Each triple (p, q, r) = (0, 0, r) is a solution of this system and there are infinitely many
such solutions. (This is not all of the solutions, but represents infinitely many solutions.)
Therefore, when (a, b, c) = (−6,−8,−24), there are also infinitely many solutions to the
original system of equations.

Therefore, the system of equations has an infinite number of solutions (x, y, z) precisely
when (a, b, c) = (−6,−8, c) for some real number c or (a, b, c) = (−6, b,−24) for some real
number b or (a, b, c) = (a,−8,−24) for some real number a or (a, b, c) = (−6,−8,−24).
(This last triple is in fact included in each of the previous three families of triples.)
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10. (a) The subsets of C4 are:
{} {1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

(There are 16 such subsets including the empty set {} and the complete set C4 = {1, 2, 3, 4}.)
Consider the Furoni family A = {{1, 2}, {1, 3}, {1, 4}}.
Each of the following subsets of C4 is already an element of A: {1, 2}, {1, 3}, {1, 4}.
Each of the following subsets of C4 is a subset of one or more of the elements of A:
{}, {1}, {2}, {3}, {4}.
Each of the following subsets of C4 has the property that one or more of the elements of
A is a subset of it: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}.
Since a Furoni family of C4 cannot contain two subsets of C4 one of which is a subset of
the other, none of the subsets in either of these two lists can be added to A to form a
larger Furoni family.
This leaves the following subsets of C4 to consider as possible elements to add to A:
{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}.
If {2, 3, 4} is added to A to form A′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}, then A′ is still a
Furoni family of C4 and none of {2, 3}, {2, 4}, {3, 4} can be added, since each is a subset
of {2, 3, 4}. Therefore, A′ is a Furoni family of C4 to which no other subset can be added.
If any of {2, 3}, {2, 4}, {3, 4} is added to A, then {2, 3, 4} cannot be added (since each of
these three two elements sets is a subset of {2, 3, 4}) but each of the remaining two element
sets can be still added without violating the conditions for being a Furoni family.
Thus, A′′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} is a Furoni family of C4 to which
no other subset can be added.
Therefore, the two Furoni families of C4 that contain all of the elements of A and to which
no further subsets of C4 can be added are

A′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}} A′′ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

(b) Solution 1
Suppose that n is a positive integer and F is a Furoni family of Cn that contains ak ele-
ments that contain exactly k integers each, for each integer k from 0 to n, inclusive.
Consider each element E of F .
Each E is a subset of Cn. Suppose that a particular choice for E contains exactly k ele-
ments.
We use E to generate k!(n − k)! permutations σ of the integers in Cn = {1, 2, 3, . . . , n}
by starting with a permutation α of the elements of E and appending a permutation β of
the elements in Cn not in E.
Since there are k elements in E, there are k! possible permutations α.
Since there are n− k elements in Cn that are not in E, there are (n− k)! possible permu-
tations β.
Each possible α can have each possible β appended to it, so there are k!(n− k)! possible
permutations σ = α|β. (The notation “α|β” means the permutation of Cn formed by writ-
ing out the permutation α (of the elements of E) followed by writing out the permutation
β (of the elements of Cn not in E).)
Each of these k!(n− k)! permutations generated by E is indeed different, since if two per-
mutations σ = α|β and σ′ = α′|β′ are equal, then since α and α′ are both permutations
of the elements of E, then they have the same length and so α|β = α′|β′ means α = α′.
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This then means that β = β′ and so the permutations started out the same.
We repeat this process for each of the elements E of F .
Since, for each k, there are ak subsets of size k in F , then the total number of permutations
that this generates is

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)!

If each of these permutations is different, then this total is at most n!, since this is the
total number of permutations of the elements of Cn.
Is it possible that two elements E and G of F generate identical permutations of the
elements of Cn in this way?
Suppose that two permutations σ = α|β (generated by E) and σ′ = α′|β′ (generated by
G) are identical.
Suppose that E contains k elements and G contains k′ elements.
Either k ≤ k′ or k′ ≤ k (or both, if they are equal).
Without loss of generality, suppose that k ≤ k′.
Then the length of α (which is k) is less than or equal to the length of α′ (which is k′).
But α|β = α′|β′, so this means that the first k entries in α′ are equal to the first k entries
in α.
But the entries in α are the elements of E and the entries of α′ are the elements of G, so
this means that E is a subset of G, which cannot be the case. This is a contradiction.
Therefore, each of the permutations generated by each of the subsets of Cn contained in
F is unique.
Therefore,

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)! ≤ n!

Dividing both sides by n!, we obtain successively

a00!(n− 0)! + a11!(n− 1)! + · · ·+ an−1(n− 1)!(n− (n− 1))1! + ann!(n− n)! ≤ n!

a0
0!(n− 0)!

n!
+ a1

1!(n− 1)!

n!
+ · · ·+ an−1

(n− 1)!(n− (n− 1))1!

n!
+ an

n!(n− n)!

n!
≤ 1

a0
1(
n

0

) + a1
1(
n

1

) + · · ·+ an−1
1(
n

n− 1

) + an
1(
n

n

) ≤ 1

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

as required.
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Solution 2
Suppose that n is a positive integer and that F is a randomly chosen Furoni family of Cn.
Consider L = {{}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, . . . , n}}.
The probability that the intersection of L and F is non-empty is at most 1.
Note that since each element of L is a subset of all of those to its right in the listing of L,
then at most one of the elements of L can be in F .
If k is an integer with k ≥ 0, the probability that {1, 2, 3, . . . , k} is an element of F is
ak(
n

k

) , where ak is the number of elements in F that contain exactly k integers:

There are

(
n

k

)
subsets of Cn that contain exactly k integer.

The probability that any particular one of these subsets is {1, 2, 3, . . . , k} equals
1(
n

k

) .

Since ak of these subsets are in F , then the probability that one of these ak subsets

is {1, 2, 3, . . . , k} equals
ak(
n

k

) .

(Note that we use the convention that if k = 0, then {1, 2, 3, . . . , k} = {}.)
The probability that any of the elements of L is in F is the sum of the probability of each
element being in F , since at most one of the elements in L is in F .
Therefore,

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

as required.

(c) Set M =

(
n

k

)
where k = 1

2
n if n is even and k = 1

2
(n− 1) if n is odd.

Then

(
n

r

)
≤ M for every integer r with 0 ≤ r ≤ n. (Recall that the largest entries in

Pascal’s Triangle are the one or two entries in the middle of each row. We prove this
algebraically at the end.)
From (b),

a0(
n

0

) +
a1(
n

1

) + · · ·+ an−1(
n

n− 1

) +
an(
n

n

) ≤ 1

Multiplying through by M , we obtain

a0
M(
n

0

) + a1
M(
n

1

) + · · ·+ an−1
M(
n

n− 1

) + an
M(
n

n

) ≤M

Since M is at least as large as each binomial coefficient, then each of the fractions on the
left side is larger than 1 and so

a0 + a1 + · · ·+ an−1 + an ≤ a0
M(
n

0

) + a1
M(
n

1

) + · · ·+ an−1
M(
n

n− 1

) + an
M(
n

n

) ≤M
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Therefore, the total number of elements in the Furoni family F , which is a0 +a1 + · · ·+an,
is at most M .
Is it possible to find a Furoni family of size M?

Yes – the M =

(
n

k

)
subsets of Cn of size k form a Furoni family, since no two sets of the

same size can be subsets of each other without being equal. Therefore, the largest Furoni

family of Cn has size

(
n

k

)
when n = 2k or n = 2k + 1 for some non-negative integer k.

We now prove the algebraic result above.

First, we note that

(
n

r

)
=

n!

r!(n− r)!
=

n!

(n− r)!(n− (n− r))!
=

(
n

n− r

)
.

Therefore, if

(
n

r

)
≤
(
n

k

)
for all r ≤ k, then

(
n

r

)
≤
(
n

k

)
for all k, since if s > k, then

s = n− r for some r ≤ k and so

(
n

s

)
=

(
n

r

)
≤
(
n

k

)
.

Suppose first that n = 2k for some positive integer k.

We prove that

(
n

r

)
≤
(
n

k

)
for each integer r with 0 ≤ r ≤ k:

Since n = 2k, then (
n

r

)
(
n

k

) =

(2k)!

r!(2k − r)!
(2k)!

k!k!

=
k!

r!

k!

(2k − r)!

If r = k − d for some non-negative integer d, then

k!

r!

k!

(2k − r)!
=

k!k!

(k − d)!(k + d)!
=

k(k − 1) · · · (k − d+ 1)

(k + 1)(k + 2) · · · (k + d)
=

k

k + 1

k − 1

k + 2
· · · k − d+ 1

k + d

Since the right side is the product of d non-negative fractions, each of which is
smaller than 1, then their product is smaller than 1.

Thus,

(
n

r

)
≤
(
n

k

)
if 0 ≤ r ≤ k.

Suppose next that n = 2k + 1 for some non-negative integer k.

We prove that

(
n

r

)
≤
(
n

k

)
for each integer r with 0 ≤ r ≤ k:

Since n = 2k + 1, then(
n

r

)
(
n

k

) =

(2k + 1)!

r!(2k + 1− r)!
(2k + 1)!

k!(k + 1)!

=
k!

r!

(k + 1)!

(2k + 1− r)!

If r = k − d for some non-negative integer d, then

k!

r!

(k + 1)!

(2k + 1− r)!
=

k!(k + 1)!

(k − d)!(k + 1 + d)!

=
k(k − 1) · · · (k − d+ 1)

(k + 2)(k + 3) · · · (k + 1 + d)

=
k

k + 2

k − 1

k + 3
· · · k − d+ 1

k + 1 + d
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Since the right side is the product of d non-negative fractions, each of which is
smaller than 1, then their product is smaller than 1.

Thus,

(
n

r

)
≤
(
n

k

)
if 0 ≤ r ≤ k.

This completes our proof.


