Math Circles - Problem Set 1 Introduction to Sequences and Series

Zack Cramer - zcramer@uwaterloo.ca

February 27, 2019

- 1. (a) If the sequence $7, a, b, 43, \ldots$ is arithmetic, what are the values of a and b?
 - (b) The 6^{th} term of an arithmetic sequence is 59, and the 21^{st} term is 14. What is the common difference?
- **2.** The sum of the first n terms of a sequence is n(n+1)(n+2).
 - (a) Write down the first 5 terms in this sequence.
 - (b) What is the 180^{th} term?
 - (c) Find an expression for the n^{th} term in the sequence.
- **3.** (a) The sum of 100 consecutive integers is 9350. What is the largest of these integers?
 - (b) The sum of the first 6 terms in an arithmetic sequence is -81, and the sum of the first 40 terms is 4220. What is the 14^{th} term in the sequence?
- 4. (a) Find the sum of the first 1000 positive integers.
 - (b) Find the sum of the numbers between 1 and 1000 (including 1 and 1000) that are not multiples of 3.
 - (c) Determine the value of $1 2 + 3 4 + \cdots + 99 100$.
- **5.** The numbers 2, 5, 8, 11, 14, ... are written in order in a book, beginning on page 1. There are 100 numbers on each page. On what page can the number 11 111 be found?
- **6.** (a) The 3^{rd} term in a geometric sequence is 8 and the 6^{th} term is 17 576. What is the common ratio?

- (b) The 10^{th} term of a geometric sequence is -6655 and the 13^{th} term is 5. What is the common ratio?
- 7. (a) Consider the recursive sequence defined by $a_1 = 9$ and $a_n = a_{n-1} 4$ for all $n \ge 2$. Find a formula for a_n that depends only on n.
 - (b) Consider the recursive sequence defined by $a_1 = 1$, $a_2 = -1$, and $a_n = \left(\frac{n-3}{n-1}\right)a_{n-2}$ for $n \ge 3$. Determine the values of a_{2019} and a_{2020} .

Challenge Problems

- **8.** Can a sequence with infinitely many terms be both arithmetic and geometric? If so, describe all sequences with this property.
- **9.** Determine an expression for the sum of the first n terms in a geometric sequence. (We'll derive this next lesson to solve the pizza problem!)