

FACULTY OF MATHEMATICS WATERLOO, ONTARIO N2L 3G1

CENTRE FOR EDUCATION IN MATHEMATICS AND COMPUTING

Grade 6 Math Circles Winter 2019 – Mar. 19/20 Exponentiation

Solutions

Blanks (in order of occurrence): exponentiation, square root, one, $\sqrt[3]{8^2} = \sqrt[3]{64} = 4$

"Trv it vourself" #1: 1. $4^3 = 4 \times 4 \times 4 = 64$ 2. $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$ 3 $8^2 = 8 \times 8 = 64$ "Try it yourself" #2:1. $1^2 = 1 \times 1 = 1$ 2. $1^3 = 1 \times 1 \times 1 = 1$ 3. $1^{2019} = \underbrace{1 \times \cdots \times 1}_{2019 \text{ times}} = 1$ 4. $0^2 = 0 \times 0 = 0$ 5. $0^3 = 0 \times 0 \times 0 = 0$ 6. $0^{2019} = \underbrace{0 \times \cdots \times 0}_{2019 \text{ times}} = 0$ "Try it yourself" #3: 1. $2^1 = 2$ 2. $3^1 = 3$ 3. $2019^1 = 2019$

"Try it yourself" #4:

1.
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
 or 0.125

2.
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$
 or 0.04

3. $10^{-4} = \frac{1}{10^4} = \frac{1}{10000}$ or 0.0001

"Try it yourself" #5:

- 1. $\sqrt{49} = 7$ since $7^2 = 49$
- 2. $\sqrt{81} = 9$ since $9^2 = 81$
- 3. $\sqrt[3]{-27} = -3$ since $(-3)^3 = 27$
- 4. $\sqrt[5]{32} = 2$ since $2^5 = 32$

"Try it yourself" #6: 1. $49^{\frac{1}{2}} = \sqrt{49} = 7$ 2. $81^{\frac{1}{2}} = \sqrt{81} = 9$ 3. $(-27)^{\frac{1}{3}} = \sqrt[3]{-27} = -3$ 4. $32^{\frac{1}{5}} = \sqrt[5]{32} = 2$ "Try it yourself" #7:

1. $2^2 \times 2^2 = 2^4 = 16$ 1. $(2^2)^2 = 2^4 = 16$ 2. $3^2 \times 3 = 3^3 = 27$ 2. $(3^4)^{\frac{1}{2}} = 3^2 = 9$ 3. $5^2 \times 5^2 = 5^4 = 625$ 3. $(5^2)^{-1} = 5^{-2} = \frac{1}{25}$ 4. $6^1 \times 6^{-1} = 6^0 = 1$ 4. $(6^1)^{-2} = 6^{-2} = \frac{1}{36}$

End-of-lesson problems:

1. (a) $5^2 = 5 \times 5 = 25$ (b) $3^3 = 3 \times 3 \times 3 = 27$ (c) $4^{-1} = \frac{1}{4}$ or 0.25 2. (a) $2^2 \times 2^3 = 2^{2+3} = 2^5$ (b) $3^8 \times 3^{-6} = 3^{8-6} = 3^2$ (c) $\sqrt{5} \times 5^{\frac{3}{2}} = 5^{\frac{1}{2}} \times 5^{\frac{3}{2}} = 5^{\frac{1}{2}+\frac{3}{2}} = 5^2$ (d) $8^{19} \times \frac{1}{8^{20}} = 8^{19} \times 8^{-20} = 8^{-1}$ or $\frac{1}{8}$

(d)
$$9^{\frac{1}{2}} = \sqrt{9} = 3$$

(e) $64^{-\frac{1}{3}} = \frac{1}{64^{\frac{1}{3}}} = \frac{1}{\sqrt[3]{64}} = \frac{1}{4}$ or 0.25
(f) $8^{-\frac{2}{3}} = \frac{1}{8^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{8^2}} = \frac{1}{\sqrt[3]{64}} = \frac{1}{4}$ or 0.25
(e) $\left(11^2 \times \frac{1}{12} \div 11^{-\frac{2}{3}}\right) = \left(11^2 \times \frac{1}{12} \div \frac{1}{12}\right)$

"Try it yourself" #8:

(e)
$$\left(11^2 \times \frac{1}{\sqrt[3]{11}} \div 11^{-\frac{2}{3}}\right) = \left(11^2 \times \frac{1}{11^{\frac{1}{3}}} \div \frac{1}{11^{\frac{2}{3}}}\right) = \left(11^2 \times 11^{-\frac{1}{3}} \times 11^{\frac{2}{3}}\right) = 11^{\frac{6}{3} - \frac{1}{3} + \frac{2}{3}} = 11^{\frac{7}{3}} \approx 269.102$$

3. (a)
$$(2^2)^{\frac{1}{2}} = 2^{\left(2 \times \frac{1}{2}\right)} = 2^1 = 2$$

(b) $(3^{-1})^{-3} = 3^{\left((-1) \times (-3)\right)} = 3^3 = 27$
(c) $\left(\left(\frac{1}{5}\right)^2\right)^{-\frac{3}{2}} = \left((5^{-1})^2\right)^{-\frac{3}{2}} = \left(5^{\left((-1) \times 2\right)}\right)^{-\frac{3}{2}} = (5^{-2})^{-\frac{3}{2}} = 5^{\left((-2) \times (-\frac{3}{2})\right)} = 5^3 = 125$
(d) $\left(8^{\frac{1}{3}}\right)^{\frac{3}{277}} = \left(8^{\frac{1}{3}}\right)^3 = 8^{\left(\frac{1}{3} \times 3\right)} = 8^1 = 8$
(e) $\left(\left(\frac{1}{\sqrt{11}}\right)^{\frac{1}{4}}\right)^{-\sqrt{16}} = \left(\left(\frac{1}{11^{\frac{1}{2}}}\right)^{\frac{1}{4}}\right)^{-\sqrt{16}} = \left(\left(11^{-\frac{1}{2}}\right)^{\frac{1}{4}}\right)^{-\sqrt{16}} = \left(11^{\left(\left(-\frac{1}{2}\right) \times \frac{1}{4}\right)}\right)^{-\sqrt{16}} = \left(11^{-\frac{1}{8}}\right)^{-4} = 11^{\left(\left(-\frac{1}{8}\right) \times (-4)\right)} = 11^{\frac{1}{2}} \text{ or } \sqrt{11} \approx 3.317$
4. (a) $10^x - 10 = 9990 \Longrightarrow 10^x = 10000$, so $x = 4$
(b) $4^x = 64^2 \Longrightarrow 4^x = (4^3)^2 \Longrightarrow 4^x = 4^6$, so $x = 6$
(c) $3^6 = 27^x \Longrightarrow 3^6 = (3^3)^x \Longrightarrow 3^6 = 3^{3x} \Longrightarrow 3x = 6$, so $x = 2$
(d) $5^{33} = 125^x \Longrightarrow 5^{33} = (5^3)^x \Longrightarrow 5^{33} = 5^{3x} \Longrightarrow 3x = 33$, so $x = 11$
(e) $6^{x+2} = 216 \Longrightarrow 6^{x+2} = 6^3 \Longrightarrow x + 2 = 3$, so $x = 1$
(f) $8^{x-1} = 2^6 \Longrightarrow (2^3)^{x-1} = 2^6 \Longrightarrow 2^6 = 2^{3x-3} \Longrightarrow 3x - 3 = 6$, so $x = 3$

5. (a) If x = -3, $x^2 - 9 = (-3)^2 - 9$ = 9 - 9= 0

(b) If
$$x = 2$$
,
 $x^2 - 2x + 1 = (2)^2 - 2(2) + 1$
 $= 4 - 4 + 1$
 $= 1$

(c) If
$$x = 4$$
,
 $x^2 + 4x - 5 = (4)^2 + 4(4) - 5$
 $= 16 + 16 - 5$
 $= 27$

(d) If
$$x = -1$$
, $x^3 + x^2 + x + 1 = (-1)^3 + (-1)^2 + (-1) + 1$
= $-1 + 1 - 1 + 1$
= 0

(e) If
$$x = 0$$
, $3x^4 - 5x^3 + x^2 + 12x - 8 = 3(0)^4 - 5(0)^3 + (0)^2 + 12(0) - 8$
= $0 + 0 + 0 + 0 - 8$
= -8

(f) If x = 5,

$$2x^{5} - 3x^{4} + 31x^{3} - 8x^{2} + x - 10 = 2(5)^{5} - 3(5)^{4} + 31(5)^{3} - 8(5)^{2} + (5) - 10$$

= 2(25 × 125) - 3(25 × 25) + 31(125) - 8(25) + 5 - 10
= 2(3125) - 3(625) + 31(125) - 8(25) + 5 - 10
= 6250 - 1875 + 3875 - 200 + 5 - 10
= 8045

6. The only two distinct positive integers that satisfy this equation are 2 and 4.