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November 3rd, 2021

Lesson 2: Algebraic and Transcendental Numbers

§1 Introduction

In Lesson 1, you learned about irrational numbers, and in this lesson we will focus on even more

bizarre numbers — those that are called transcendental. Transcendental numbers are generalizations

of irrational numbers. Proofs of transcendence are even harder than proofs of irrationality, and they

rely on mysterious mathematical theories, such as the theory of Linear Forms in Logarithms. In

this lesson, we will see what algebraic and transcendental numbers are, construct a transcendental

number, and learn about famous theorems and open problems in Transcendental Number Theory.

§2 Polynomials and Their Rate of Growth

Before we introduce the notion of a transcendental number, we need to recall some of our knowledge

on polynomials. Let d be some non-negative integer, and let a0, a1, . . . , ad be real numbers. We refer

to the function f(x) of the form

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0

as a polynomial. Here are some examples of polynomials:

• f(x) = 0 (we also refer to this function as the zero polynomial)

• g(x) = x+ 1

• h(x) = x2 − 2

In Figure ??, the graphs of f(x), g(x) and h(x). Notice that, for large enough x, g(x) grows faster

than f(x), while h(x) grows faster than g(x).
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Figure 1: Graphs of f(x) = 0, g(x) = x+ 1 and h(x) = x2 − 2

Exercise 1

Determine which of the following functions are polynomials:

• x3 − x+ 1

•
√
x

• x+ 1
x

• π

If for a non-zero polynomial f(x) = adx
d + · · · + a1x + a0 we have ad 6= 0, then we say that a

polynomial f(x) has degree d, denoted deg f(x). If f(x) is the zero polynomial, we are going to say

that its degree is undefined. For example,

• The degree of f(x) = 0 is undefined;

• The degree of g(x) = x+ 1 is equal to 1;

• The degree of h(x) = x2 − 2 is equal to 2.
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Exercise 2

Determine the degrees of each of the following polynomials:

• f(x) = 1

• g(x) = 8x3 − 6x− 1

• h(x) = 4x2 − 2x− 1

Another important parameter associated with a polynomial is its height. A height of a polynomial

f(x) = adx
d + · · ·+ a1x+ a0 is the non-negative number

H = max ( |a0|, |a1|, . . . , |ad| )

For example,

• The height of f(x) = 0 is H = max( |0| ) = 0;

• The height of g(x) = x− 1 is H = max ( | − 1|, |1| ) = 1;

• The height of h(x) = x2 − 2 is H = max ( | − 2|, |0|, |1| ) = 2.

Exercise 3

Determine the heights of each of the following polynomials:

• f(x) = 1

• g(x) = 8x3 − 6x− 1

• h(x) = 4x2 − 2x− 1

The degree and the height are important, because they tells us how big can the function |f(x)| be

depending on the value of x. The following theorem makes this statement precise.

Theorem 1 (Rate of Growth of a Polynomial)

Let f(x) = adx
d + · · · + a1x + a0 be a polynomial of degreed d and height H. Then for every

real number α,

|f(α)| ≤ H ·
(
|α|d + · · · + |α|+ 1

)
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Proof. Suppose that

f(x) = adx
d + · · ·+ a1x+ a0

Notice how

|a0| ≤ H, |a1| ≤ H, . . . , |ad| ≤ H

Thus,

|a0| ≤ H, |a1α| ≤ H · |α|, . . . ,
∣∣adαd∣∣ ≤ H · |α|d

Now, recall the triangle inequality, which tells us that |v+w| ≤ |v|+ |w| for all real numbers v and w.

Therefore,

|f(α)| = |adαd + · · · + a1α + a0|

Triangle inequality→ ≤ |adαd| + · · · + |a1α| + |a0|

≤ H · |α|d + · · · + H · |α| + H

= H ·
(
|α|d + · · · + |α|+ 1

)

Figure 2: Graphs of y = |x2 − 2| and y = 2 · (|x|2 + |x|+ 1)
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Theorem 1 tells us that, for a polynomial f(x) of degree d and height H, the absolute value of f(x)

is bounded above by the function H ·
(
|x|d + · · · + |x|+ 1

)
. In Figure ?? it is illustrated that,

when f(x) = x2 − 2, the graph of y = |x2 − 2| lies below the graph of y = 2 · (|x|2 + |x|+ 1). But

how good is this bound? Are there examples of polynomials for which this bound is attainable? You

will explore this question in the following exercise.

Exercise 4

For each non-negative integer d, find a polynomial f(x) of degree d and height H such that

|f(α)| = H ·
(
|α|d + · · · + |α|+ 1

)
for some real number α.

§3 Polynomial Divisibility and Roots of Polynomials

In some way, polynomials are very similar to integers. For example, you can add, subtract and

multiply polynomials, and the result will still be a polynomial. Polynomials also have an analogue

of division with remainder.

Theorem 2 (Division With Remainder)

For all polynomials f(x) and g(x), with g(x) not equal to the zero polynomial, there exist unique

polynomials q(x) (the quotient) and r(x) (the remainder), such that

f(x) = q(x) · g(x) + r(x)

and either r(x) is the zero polynomial or 0 ≤ deg r(x) < deg g(x).

Just like for integers, we can find quotient and remainder using polynomial long division. For example,

we can find the quotient and remainder of f(x) = x3 + x2 − 2x− 2 when divided by g(x) = x+ 1 as

follows:
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x2 + 0x− 2

x+ 1
)

x3 + x2 − 2x− 2

− x3 − x2

0x2 − 2x

0x2 + 0x

− 2x− 2

2x + 2

0

Based on these calculations, we find that f(x) = q(x) · g(x) + r(x), where

q(x) = x2 − 2 and r(x) = 0

In Exercise 5 you can practice polynomial long division. For review, consider completing the module

on Polynomial Equations and Inequalities in the CEMC Courseware.

Exercise 5

Find the quotient and remainder of f(x) = x2 − 2 when divided by g(x) = x− 3
2
.

Notice how in Exercise 5, as well as in example preceding it, the remainder turned out to be a constant

polynomial. Theorem 2 tells us that this is exactly what we should expect when the polynomial g(x)

that we are dividing by has degree 1, since in this case r(x) is either the zero polynomial or its degree

satisfies the inequality 0 ≤ deg r(x) < deg g(x) = 1, so deg r(x) = 0. Theorem 3 shows that the

situation becomes especially interesting when we divide a polynomial f(x) by a polynomial x − α,

where α satisfies f(α) = 0.

Theorem 3 (Factor Theorem)

Let f(x) be a non-zero polynomial and let α be a real number such that f(α) = 0. Then

f(x) = q(x) · (x− α)

for some polynomial q(x).

Proof. Since x − α is not equal to the zero polynomial, it follows from Theorem 1 that there exist
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polynomials q(x) and r(x) such that

f(x) = q(x) · (x− α) + r(x)

and r(x) is either the zero polynomial or 0 ≤ deg r(x) < deg(x − α). Since deg(x − α) = 1, we see

that r(x) must be a constant polynomial, i.e., there exists a real number r such that r(x) = r for all

real numbers x. Thus,

f(x) = q(x) · (x− α) + r

and since f(α) = 0, we see that

r = f(α)− q(α) · (α− α) = 0

which means that f(x) = q(x) · (x− α).

If f(x) is a non-zero polynomial, we refer to a real number α such that f(α) = 0 as a root of f(x).

Notice in the example above that, since α = −1 is a root of f(x) = x3 + x2− 2x− 2, the polynomial

f(x) can be written as f(x) = q(x)(x− (−1)), where q(x) = x2 − 2.

§4 Algebraic and Transcendental Numbers

Now that we reviewed properties of polynomials, we are ready to introduce the concept of an algebraic

number, which will later help us to explain what a transcendental number is. Note that, if a number
m
n

is rational, then it is a root of a non-zero polynomial f(x) = nx−m of degree 1, which has rational

coefficients:

f
(m
n

)
= n · m

n
−m = m−m = 0

It turns out that it is possible to find a polynomial like that for other numbers, possibly of higher

degree. Take, for example, the number
√

2 and the polynomial g(x) = x2 − 2. Then,

g
(√

2
)

=
(√

2
)2
− 2 = 2− 2 = 0

This motivates the following definition: we are going to say that a real number α is algebraic if there

exists a non-zero polynomial f(x), with rational coefficients, such that f(α) = 0.
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Exercise 6

Prove that each of the following real numbers α are algebraic by finding a non-zero polynomial

f(x), with rational coefficients, such that f(α) = 0:

• cos(90◦)

• cos(30◦)

• cos(1◦)

Hint: To solve the last one, recall the definition of an n-th Chebyshev polynomial Tn(x) from

§3 of Lesson 1.

So what are transcendental numbers? Well, we say that a number α is transcendental if it is not

algebraic. That’s it! To be more precise, a number α is transcendental if there does not exist a

non-zero polynomial f(x), with rational coefficients, such that f(α) = 0.

Now, just like Ancient Greeks wondered whether or not every number is rational (the answer is “no”,

as you know from Lesson 1, §1, Theorem 1), we wonder whether every number out there is algebraic.

The answer to this question is, once again, “no”, but the proof of this fact is rather non-trivial.

The first ever transcendental number was discovered in 1844 by a French mathematician Joseph

Liouville, and in x6 we will learn about the criterion for transcendence that enabled Liouville to

make his famous discovery.

§5 Minimal Polynomial of an Algebraic Number

In order to understand Liouville’s criterion for transcendentality, we first need to understand algebraic

numbers better. If we take an algebraic number α, then we know that there exists a non-zero

polynomial f(x), with rational coefficients, such that f(α) = 0. The problem though is that there

could be many polynomials with this property. Take, for example, α =
√

2. Then each of the

following non-zero polynomials with rational coefficients has α as its root:

• 1
2
x2 − 1

• x3 − 2x

• x2 − 2

• −x2 + 2

• 3x2 − 6
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Among all these polynomials, is it possible to pick the one that is the most convenient to work with?

It turns out that it is possible. In particular, notice how the polynomial f(x) = x2 − 2 has integer

coefficients, its leading coefficient is positive, and no other polynomial that has α as a root has a

degree smaller than deg f(x). Further, its coefficients −2, 0 and 1 have no positive common divisors,

apart from 1. It turns out that x2 − 2 is the only polynomial with such unique properties, and we

refer to it as the minimal polynomial of α =
√

2.

Let us now introduce our last definition for this lesson. We say that f(x) = adx
d + · · ·+ a1x+ a0 is

the minimal polynomial of an algebraic number α if

1. f(α) = 0;

2. f(x) has integer coefficients;

3. ad > 0;

4. The only positive common divisor k of the coefficients a0, a1, . . . , ad is k = 1; and

5. The degree of f(x) is the smallest among all non-zero polynomials q(x), with rational coeffi-

cients, such that q(α) = 0.

In Theorem 4, which we leave without proof, we state the defining property of a minimal polynomial.

Theorem 4 (Minimal Polynomial Is Unique)

The minimal polynomial of an algebraic number α is unique.

Theorem 5

The minimal polynomial of
√

2 is f(x) = x2 − 2.

Proof. Let us verify that f(x) = x2−2 satisfies each of the five properties of the minimal polynomial

of α =
√

2:

1. We have f(α) =
(√

2
)2 − 2 = 2− 2 = 0.

2. The coefficients of f(x) are −2, 0 and 1, which are all integers.

3. The leading coefficient of f(x) is equal to 1 and it is positive.

4. The only positive common divisor of −2, 0 and 1 is 1.

5. Suppose that f(x) = x2 − 2 does not have the smallest degree, and so there exists a non-zero

polynomial q(x), with rational coefficients, such that q(α) = 0 and deg q(x) < deg f(x). Then

9



the degree of q(x) has to be equal to 1, and so g(x) = ax + b for some a, b ∈ Q, with a 6= 0.

Now, since g(α) = 0, we see that a ·
√

2 + b = 0, which is equivalent to
√

2 = − b
a
. Since

the number − b
a

is rational and
√

2 is irrational, we reach a contradiction. Thus, f(x) has the

smallest degree.

Since f(x) satisfies all the properties of the minimal polynomial of
√

2, it follows from Theorem 4

that f(x) = x2 − 2 is the minimal polynomial of
√

2.

Exercise 7

Let m
n

be a rational number, with m ∈ Z and n ∈ N, written in lowest terms. Prove that the

minimal polynomial of m
n

is f(x) = nx−m.

Exercise 8

Determine, with proof, the minimal polynomial of cos(30◦).

§6 Approximation of Algebraic Numbers By Rationals

Finally, we are able to state a very important result, which gives us a property that characterizes all

algebraic numbers.

Theorem 6

Let α be an algebraic number with the minimal polynomial f(x) of degree d. There exists a

positive number C, which depends only on α, such thats for every rational number p
q
6= α, with

p ∈ Z and q ∈ N, the inequality ∣∣∣∣α− p

q

∣∣∣∣ ≥ C

qd

is satisfied. Furthermore, we can take

C =
1

H ·
(

(1 + |α|)d−1 + · · ·+ (1 + |α|) + 1
)

where H is the height of the polynomial g(x) such that f(x) = (x− α)g(x).
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Theorem 6 tells us that, no matter what you do, any algebraic α cannot be approximated by a

rational number p/q 6= α “too well”. In other words, if α 6= p/q, there is always a limitation to how

close p/q can be to α: the distance between these two numbers can never be smaller than Cq−d.

Notice how similar the above theorem is to the result proved in §5 of Lesson 1. The latter follows by

simply taking d = 1 in Theorem 6 above.

Let us now turn our attention to the proof of Theorem 6. To do so, we need to establish two

supplementary results. In mathematics, such results are called lemmas.

Lemma 1

Let α be an algebraic number with the minimal polynomial f(x) of degree d ≥ 1. Then for

every rational number p
q
6= α, with p ∈ Z and q ∈ N, it is the case that

f

(
p

q

)
6= 0

Proof. Let α be an algebraic number, with minimal polynomial f(x) of degree d ≥ 1. Let p
q
6= α be

a rational number, with p ∈ Z and q ∈ N. We claim that f
(
p
q

)
is not equal to zero. To prove this,

assume, for a contradiction, that f
(
p
q

)
= 0. Then it follows from Theorem 3 that is possible to write

f(x) as f(x) = q(x) ·
(
x− p

q

)
for some non-zero polynomial q(x) of degree d− 1. Furthermore, since

both f(x) and x− p
q

have rational coefficients, the quotient polynomial q(x) must also have rational

coefficients (make sure you understand why). But then

0 = f(α) = q(x) ·
(
α− p

q

)
and since α − p

q
6= 0, it must be the case that q(α) = 0. Since q(x) is a non-zero polynomial, with

rational coefficients, such that q(α) = 0, it must be the case that the degree of q(x) cannot be smaller

that the degree of the minimal polynomial of α, i.e., deg g(x) ≥ deg f(x). However, we know that

deg g(x) = d− 1 < d = deg f(x)

so we reach a contradiction. Therefore, f
(
p
q

)
6= 0.
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Lemma 2

Let α be an algebraic number with minimal polynomial f(x) of degree d ≥ 1. Then for every

rational number p
q
6= α, with p ∈ Z and q ∈ N, it is the case that∣∣∣∣f (pq

)∣∣∣∣ ≥ 1

qn

Proof. Let f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 and observe that

f

(
p

q

)
= ad

(
p

q

)d
+ ad−1

(
p

q

)d−1
+ · · ·+ a1 ·

p

q
+ a0

= ad ·
pd

qd
+ ad−1 ·

pd−1

qd−1
+ · · ·+ a1 ·

p

q
+ a0

= ad ·
pd

qd
+ ad−1 ·

pd−1q

qd
+ · · ·+ a1 ·

pqd−1

qd
+ a0 ·

qd

qd

=
adp

d + ad−1p
d−1q + · · ·+ a1pq

d−1 + a0q
d

qd

=
A

qd

where

A = adp
d + ad−1p

d−1q + · · ·+ a1pq
d−1 + a0q

d

Since p and q are integers, and the coefficients of the minimal polynomial of f(x) are integers, we see

that A is an integer. We claim that A is not equal to zero. For suppose not. Then

0 = A

= adp
d + ad−1p

d−1q + · · ·+ a1pq
d−1 + a0q

d

= qd
(
ad ·

pd

qd
+ ad−1 ·

pd−1q

qd
+ · · ·+ a1 ·

pqd−1

qd
+ a0 ·

qd

qd

)
= qdf

(
p

q

)

Since qd 6= 0, it must be the case that f
(
p
q

)
= 0, which contradicts our result established in Lemma 1.
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Therefore, A 6= 0, and since A is an integer, we conclude that |A| ≥ 1. Therefore,∣∣∣∣f (pq
)∣∣∣∣ =

|A|
qd
≥ 1

qd

Proof of Theorem 6. Let α be an algebraic number with minimal polynomial f(x) of degree d.

Let p
q

be a rational number, with q ∈ N, such that α 6= p
q
. Notice that if

∣∣∣α− p
q

∣∣∣ > 1, then

∣∣∣∣α− p

q

∣∣∣∣ > 1 ≥ 1

qd

So in this situation we can choose C = 1. Hence our theorem is true in this case, and so we may

assume that
∣∣∣α− p

q

∣∣∣ ≤ 1, or in other words

−1 ≤ p

q
− α ≤ 1

−1 + α ≤ p

q
≤ 1 + α

Thus, ∣∣∣∣pq
∣∣∣∣ ≤ max ( | − 1 + α|, |1 + α| ) ≤ 1 + |α|

Let us remember this inequality, as it will become very useful for us later.

Since f(α) = 0, it follows from Theorem 3 that f(x) = (x− α)g(x) for some polynomial

g(x) = bd−1x
d−1 + · · ·+ b1x+ b0

Therefore, ∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣∣∣g(pq
)∣∣∣∣

By Theorem 1, if we let

H = max ( |b0|, |b1|, . . . , |bd−1| )
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then ∣∣∣∣f (pq
)∣∣∣∣ =

∣∣∣∣α− p

q

∣∣∣∣ · ∣∣∣∣g(pq
)∣∣∣∣

Theorem 1→ ≤
∣∣∣∣α− p

q

∣∣∣∣ ·H ·
( ∣∣∣∣pq

∣∣∣∣d−1 + · · ·+
∣∣∣∣pq
∣∣∣∣+ 1

)

≤
∣∣∣∣α− p

q

∣∣∣∣ ·H · ( (1 + |α|)d−1 + · · ·+ (1 + |α|) + 1
)

where the last inequality follows from the fact that
∣∣∣pq ∣∣∣ ≤ 1 + |α|. If we now let

C =
1

H ·
(

(1 + |α|)d−1 + · · ·+ (1 + |α|) + 1
)

then it follows from Lemma 2 that

1

qd
≤
∣∣∣∣f (pq

)∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣ · 1

C

which means that ∣∣∣∣α− p

q

∣∣∣∣ ≥ C

qd

Let us apply Theorem 6 to find a positive real number C such that, for every rational number p
q

with

p ∈ Z and q ∈ N, ∣∣∣∣√2− p

q

∣∣∣∣ ≥ C

q2

Recall that the minimal polynomial of
√

2 is f(x) = x2 − 2. Notice that

f(x) = (x−
√

2)(x+
√

2)

If we now let g(x) = x+
√

2, then the height of g(x) is equal to

H = max( |1|, |
√

2| ) =
√

2
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At this point, we apply Theorem 6 to conclude that∣∣∣∣√2− p

q

∣∣∣∣ ≥ C

q2

where

C =
1

H ·
( (

1 +
√

2
)

+ 1
) =

1

2 + 2
√

2

Thus, no matter what rational number p/q we choose, the distance between p/q and
√

2 will never

be smaller than 1
2+2
√
2
q−2.

Exercise 9

Find a positive real number C such that, for every rational number p
q

with p ∈ Z and q ∈ N,∣∣∣∣cos(36◦)− p

q

∣∣∣∣ ≥ C

q2

Hint: Note that cos(36◦) = 1+
√
5

4
.

§7 An Interesting Criterion for Transcendence

Finally, we are ready to learn about the criterion for transcendence that Liouville discovered. In

Theorem 6, we proved that every algebraic number cannot be approximated “too well” by rationals.

Thus, if we are able to find a real number r that can be approximated by the rationals very well,

then we should be able to prove the existence of transcendental numbers.

Criterion for Transcendence

Let r be a real number. If for every positive integer d and every positive real number C there

exists a rational number p
q
, with p ∈ Z and q ∈ N, such that

0 <

∣∣∣∣r − p

q

∣∣∣∣ < C

qd

then r is transcendental.
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Notice how similar this criterion is to the criterion for irrationality described in §5 of Lesson 1.

In 1844, a number L satisfying the above criterion for transcendentality was discovered by Joseph

Liouville. Here it is:

L =
1

101!
+

1

102!
+

1

103!
+

1

104!
+

1

105!
+ · · ·

Here n! = 1 · 2 · 3 · · ·n denotes the factorial function. Notice that

L ≈ 0.11000100000000000000000100000000000000 . . .

and that the 1’s in the decimal representation of L occur in slots #1, #2, #6, #24, #120, and so

on. This is because

1! = 1, 2! = 2, 3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24, 5! = 120, . . .

If we denote

L1 =
1

101!
, L2 =

1

101!
+

1

102!
, L3 =

1

101!
+

1

102!
+

1

103!
, . . .

then the numbers L1, L2, L3, . . . are all rational and they approximate L so well that L satisfies the

criterion for trasncendence.

Figure 3: Joseph Liouville (1809–1882)

Since Liouville, a lot advances have been made in Transcedental Number Theory. For example,

Cantor proved that, in fact, there’s many more transcendental numbers than algebraic numbers.
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More precisely, he showed that it is impossible to count transcendental numbers, meaning that we

cannot align them in a sequence (1st, 2nd, 3rd, and so on) and this way count all of them. Perhaps

surprisingly, this is possible to do for algebraic numbers.

In the last quarter of the 19th century, Lindemann-Weierstrass Theorem was established, which

enabled mathematicians to show that the numbers π ≈ 3.14 and e ≈ 2.72 are transcendental.

Exercise 10

Use the fact that π is transcendental to prove that πn is transcendental for every positive

integer n.

Another important theorem in the field, called the Gelfond-Schneider Theorem, was proved indepen-

dently in 1934 by a Soviet mathematician Aleksandr Gelfond and a German mathematician Theodor

Schneider. Below is a variant of their result.

Theorem 7 (A Variant of Gelfond-Schneider Theorem)

If v > 0 and w are real algebraic numbers, with v 6= 1 and w irrational, then vw is a transcen-

dental number.

With this theorem, it became possible to prove that the numbers
√

2
√
2 ≈ 1.63 and eπ ≈ 23.14

are transcendental. You can also use it to prove that certain values of the logarithms loga b are

transcendental.

Exercise 11

Let a ≥ 2 and b ≥ 2 be integers such that b 6= n
√
am for all m,n ∈ N. Use Theorem 7 to prove

that loga b is transcendental.

Hint: Apply the result from Lesson 1, §3, Exercise 5.

Despite all of these advances, there are still many questions in Transcendental Number Theory that

remain open. For example, in Lesson 1 you’ve learned about Apéry’s constant

A = 1 +
1

23
+

1

33
+

1

43
+ · · · ≈ 1.202

While we do know that A is irrational, we still don’t know if it is transcendental or not. It is known,

however, that the number 1 + 2−s + 3−s + 4−s + · · · is transcendental for every even integer s ≥ 2.
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