
Grade 6 Math Circles

November 24th, 2021

Computer Science Part 2

This lesson is a continuation of Lesson 5 - Computer Science Part 1, so make sure you’ve gone over that

lesson before this one, which is linked here https://www.cemc.uwaterloo.ca/events/mathcircles/2021-

22/Fall/Junior6 Computer Science Part1 Nov17.pdf. Once again, this lesson deals exclusively with

the Python programming language. These concepts exist in other programming languages but are

written differently due to syntax. Additionally, the link to Python Tutor is included here for your

use.

Conditional Statements

From the previous lesson, we have defined the comparison and boolean/logical operators, and have

performed basic computations with them. But, we haven’t yet covered much of their applications in

computer programs. One of these applications is conditional statements.

The essence of conditional statements is that if a condition is True, then we perform some compu-

tation, and if the condition is False, then we perform some other computation. This is written in

Python by using the code if, elif and else. Below is a general form for how conditional statements

are written in Python.

1

https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Computer_Science_Part1_Nov17.pdf
https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Computer_Science_Part1_Nov17.pdf
https://pythontutor.com


The first line consists of if, followed by a condition that has a bool value (e.g. a == b, a < b, etc.).

If the condition is True, then Python will run the following indented code (labelled as “outcome”).

If the condition is False, then Python will skip over the following indented code. Additionally, each

conditional statement contains only one if.

The elif keyword is Python’s way of saying “if the previous conditions were not true, then try

this condition”. It works essentially the same as if, but it can only be used as a follow-up to if.

Additionally, a conditional statement can contain any number of elif ’s.

If every previous condition is False, then the indented code following else is run. We use else to

catch any cases that aren’t included in any of the previous conditions. Like elif, else can only be

used as a follow-up to if, and elif (if there’s any). Additionally, each conditional statement contains

at most one else.

We can have multiple conditional statements in a program, but only one of the conditions can be run

for each. Once a True condition is found, the following indented code is run, but then the remainder

of the conditions are skipped, regardless if they are True or not. Observe the following code:

We see that both of the conditions a > b and a >= b are true. But, since the condition a > b occurs

first, we run the following indented code, print(a), and then skip over the entire elif condition.

Also, notice that no else statement was included. This is completely valid, as it is not required for a

conditional statement to include else. The only keyword that is required for a conditional statement

is if.

2



Example 1

Recall the lesson on Linear Relations, https://www.cemc.uwaterloo.ca/events/mathcircles/2021-

22/Fall/Junior6 Linear Relations Nov3.pdf. Suppose we wish to write a program called

slope class that inputs a numerical value that represents the slope, m, of a line, and prints

if the line is increasing, decreasing or horizontal. (We are excluding vertical lines for this

example).

Solution 1

Note, that instead of writing the else statement at the end, we could have instead wrote:

which would have covered all possible numerical values for m. The way the solution is currently

written, if someone were to input a non-numerical value for m, then the program would print “The

line is horizontal”, which would be incorrect. This is why we say the value must be numerical.

Activity 1

Write a program called evens that inputs any integer, and outputs the following:

• True, if the integer is even

• False, if the integer is odd

We are also able to have conditional statements inside other conditional statements. They are called

nested conditional statements and an example is given below.

3

https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Linear_Relations_Nov3.pdf
https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Linear_Relations_Nov3.pdf


We are able to easily distinguish each condtional statement because of the indentations. Try running

this code, and other similar code, through Python Tutor.

Recursion

Recursion is the process of defining something in terms of itself. In Python, this means that we

define a program by using the program itself. This may sound a little paradoxical, but let’s try to

understand it with an example.

Before we get to the example, we first have a definition. The factorial of a postive integer x, is the

product of x and every integer below it, down to 1. It is denoted by x!. For example,

5! = 5× 4× 3× 2× 1 = 120

Example 2

Write a program called factorial using recursion, that inputs a positive integer, and outputs

the factorial of the integer.

Solution 2

4



Suppose we wanted to run factorial(5). The process that Python goes through is shown below.

factorial(5) =⇒ 5 * factorial(4) (5 == 1 is False, so we run else)

=⇒ 5 * (4 * factorial(3)) (4 == 1 is False, so we run else)

=⇒ 5 * (4 * (3 * factorial(2))) (3 == 1 is False, so we run else)

=⇒ 5 * (4 * (3 * (2 * factorial(1)))) (2 == 1 is False, so we run else)

=⇒ 5 * (4 * (3 * (2 * 1))) (1 == 1 is True, so we run if)

=⇒ 5 * (4 * (3 * 2))

=⇒ 5 * (4 * 6)

=⇒ 5 * 24

=⇒ 120

We see the program continues to refer back to itself with a smaller value each time, until it reaches

x = 1. This is called the base condition. Every recursive program must have a base condition that

stops the recursion or else the program calls itself infinitely. To prevent infinite recursions, Python

limits the depth of recursion, which is the number of times a program can call itself.

Recursion can be very complicated to fully understand, so try inputting different numbers into

factorial(x) in Python Tutor and follow along as the result is evaluated. Try to avoid inputting

large values (> 28) to avoid any problems.

Activity 2

Write a program called number sum using recursion that inputs two integer values, where the

second integer is greater than or equal to the first integer, and outputs the sum of every integer

between and including the integers.

(For example: number sum(−1, 5) outputs 14)

Advantages of Recursion

• Recursive programs make the code look clean and elegant.

• A complex task can be broken down into simpler sub-problems using recursion.

5



Disadvantages of Recursion

• Sometimes the logic behind recursion is hard to follow through.

• Recursive calls are inefficient as they take up a lot of memory and time.

• Recursive functions are hard to debug (fix).

String Operations

The previous lesson lacked many operations that can be used on str data types. The table below lists

a few string operations that are commonly used in Python programming. Note, that a substring

is a string that is a part of a larger string. For example, “ath circ” is a substring of “math circles”,

but “athcirc” is not, since it is missing the space between “h” and “c”. For the following table, let

a =“hello” .

Code Description Example

[x]
Returns the value at the index x in the string, which

starts at index 0
a[0] =⇒ “h”

[x : y]
Returns the substring starting at the index x and

ending at the index y, not including y
a[1 : 3] =⇒ “el”

len() Returns the length of the string len(a) =⇒ 5

in
Returns True if the left-hand value is a substring of the

right-hand value, and False otherwise
“h” in a =⇒ True

not in
Returns True if the left-hand value is not a substring of

the right-hand value, and False otherwise
“h” not in a =⇒ False

Activity 3

Let a = “computer” and b = “science”. Determine the following.

(a) a[2]

(b) b[3 : 6]

(c) len(b)

(d) b not in a

6



Loops

In computer science, a loop is a control-flow statement that is used to repeatedly execute a set of

code as long as a condition is satisfied. Python has two main loop commands: while and for.

While Loops

The set-up of a while loop is very similar to that of the conditional statments. The keyword while

is written, followed by some condition with a bool value. If the condition is True, then the following

indented code is executed repeatedly as long as that condition remains true. If the condition is False,

or becomes False, then the following indented code is skipped.

Example 3

Write the program factorial from Example 2 using while loops.

Solution 3

Aside from certain cases, while loops require any relevant variables to be defined before the loop. In

the above example, the relevant variables are x and result, which are both defined prior to the loop.

Had we defined result = 1 within the loop, then the value of result would reset back to 1 during

each iteration, instead of holding the product of all the values of x. To get a better understanding

of this, try running this code through Python Tutor with result defined within the loop.

Additionally, notice the last line of code within the loop, x = x− 1. It is extremely important that

we include this, because we would receive an error if we did not. If we did not decrease the value of x

during each iteration of the loop, then the loop would continue forever because x >= 1 would always

be True. To prevent this from happening, we must always increment the value of the variable in the

condition to ensure that the condition will eventually be False, thus ending the loop. We also write

x = x− 1 to make sure that result is being multiplied by the correct value each iteration, instead of

7



the same value every time.

Activity 4

Write the program number sum from Activity 2 using while loops.

For Loops

The for loop works differently depending on the programming language used. In Python, a for loop

is used for iterating over a sequence (like strings). With a for loop, we can execute a set of statements

once for each character in the sequence. Unlike while loops, for loops do not require that variables

are defined beforehand.

Example 4

Write a program called characters using for loops, that inputs a string, and prints each

character of the string individually.

Solution 4

When we run the above program in Python Tutor, we see that the value of x is a character from

string for each iteration of the loop. For example, if we ran characters(“hello”), then x = “h” for

the first iteration, x = “e” for the second iteration, and so on, until there are no more characters left.

Run this code through Python Tutor for further understanding.

The number of iterations of a for loop is equal to the length of the sequence. So, in the above

example, the number of iterations of the loop is len(string), which is 5 if string = “hello”.

Unlike while loops, for loops do not run the risk of continuing forever, unless the sequence in question

is infinite, in which case an error will occur. There are commands in Python we can implement to

prevent this, such as break, which I will leave for you to explore on your own.

8



Activity 5

Write a program called occurences using for loops, that inputs a string of any length and a

character (string of length 1), and outputs the number of times the character appears in the

string.

As a bonus exercise, try also writing this program using while loops instead of for loops.

(For example: occurences(“math circles”, “c”) outputs 2)

Nested Loops

Similar to conditional statements, we are also able to write nested loops in Python, which are loops

within loops. This means that we can have for loops within while loops, and vice versa.

On top this, we can also have loops within conditional statements, and conditional statements within

loops, which is necessary for a few of the activity questions above.

Additionally, there is no limit to how many times we can do this, but in order to preserve the

efficiency of your programs, it is advised that you try to minimize how “deep” you go with the

nesting, especially with loops.

An additional resource for a more in-depth look at computer science can be found here:

https://cscircles.cemc.uwaterloo.ca/

9

https://cscircles.cemc.uwaterloo.ca/

