Grade 6 Math Circles

November 24, 2021

Computer Science Part 2 - Problem Set

1. Let $a=$ "cleveland", $b=$ "level" and $c=$ "thousand". Determine the following.
(a) $\operatorname{len}(a+b)$
(b) c not in b
(c) $a[6: 9]==c[5: 8]$
(d) $(b$ in $a)$ and $(c$ in $a)$
2. The grading system for public schools in Ontario is given below:

Percent (\%)	Letter Grade
$0-49$	F
$50-52$	D-
$53-56$	D
$57-59$	D+
$60-62$	C-
$63-66$	C
$67-69$	C +
$70-72$	B-
$73-76$	B
$77-79$	B+
$80-86$	A-
$87-94$	A
$95-100$	A+

Write a program called letter_grade that inputs an integer percent (between 0 and 100), and outputs the corresponding letter grade.
3. Suppose we want a program called find_sevens that inputs a positive 4-digit integer and outputs the number of times that 7 appears in the integer.
(For example: find_sevens(7017) outputs 2, find_sevens(1234) outputs 0)
(a) Write the program using exclusively conditional statements (no loops or recursion).
(b) Write the program using loops.
(c) Write the program using recursion.
4. A divisor is an integer that divides into another integer with a remainder of 0 (e.g. 3 is a divisor of 12 , but 5 is not). Write a program called divisors that inputs a positive integer and individually prints each of its positive divisors. (Hint: Use loops)
5. Write a program called number_of_vowels using a for loop, that inputs a string of any length, and outputs the number of vowels within the string. For this program, we are not counting "y" as a vowel, just "a", "e", "i", "o" and " u ". Note, that if we wanted to count " y " as a vowel, then the changes would be quite simple.
(For example: number_of_vowels("math circles") outputs 3)

Bonus Question

6. The Fibonacci sequence is a sequence of numbers beginning with 0 and 1 , where each following number in the sequence is the sum of the previous two numbers. For example, the third number in the sequence would be $0+1=1$, the fourth number in the sequence would be $1+1=2$, and so on. The first 10 numbers in the sequence are given below:

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

Suppose we want a program called fibonacci that inputs a positive integer, n, and outputs the $n^{\text {th }}$ number in the Fibonacci sequence.
(For example: fibonacci(1) outputs 0, fibonacci(7) outputs 8)
(a) Write the program using while loops.
(b) Write the program using recursion.

