Grade 6 Math Circles November 24, 2021 Computer Science Part 2 - Problem Set

- 1. Let a = "cleveland", b = "level" and c = "thousand". Determine the following.
 - (a) $\operatorname{len}(a+b)$
 - (b) c not in b
 - (c) a[6:9] == c[5:8]
 - (d) (b in a) and (c in a)
- 2. The grading system for public schools in Ontario is given below:

Percent (%)	Letter Grade
0-49	F
50 - 52	D-
53 - 56	D
57 - 59	D+
60 - 62	C-
63 - 66	С
67 - 69	C+
70 - 72	B-
73 - 76	В
77 - 79	B+
80 - 86	A-
87 - 94	А
95 - 100	A+

Write a program called *letter_grade* that inputs an integer percent (between 0 and 100), and outputs the corresponding letter grade.

3. Suppose we want a program called *find_sevens* that inputs a positive 4-digit integer and outputs the number of times that 7 appears in the integer.

(For example: *find_sevens*(7017) outputs 2, *find_sevens*(1234) outputs 0)

- (a) Write the program using exclusively conditional statements (no loops or recursion).
- (b) Write the program using loops.
- (c) Write the program using recursion.
- 4. A **divisor** is an integer that divides into another integer with a remainder of 0 (e.g. 3 is a divisor of 12, but 5 is not). Write a program called *divisors* that inputs a positive integer and individually prints each of its positive divisors. (Hint: Use loops)
- 5. Write a program called *number_of_vowels* using a **for** loop, that inputs a string of any length, and outputs the number of vowels within the string. For this program, we are not counting "y" as a vowel, just "a", "e", "i", "o" and "u". Note, that if we wanted to count "y" as a vowel, then the changes would be quite simple.

(For example: *number_of_vowels*("math circles") outputs 3)

Bonus Question

6. The Fibonacci sequence is a sequence of numbers beginning with 0 and 1, where each following number in the sequence is the sum of the previous two numbers. For example, the third number in the sequence would be 0 + 1 = 1, the fourth number in the sequence would be 1 + 1 = 2, and so on. The first 10 numbers in the sequence are given below:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$$

Suppose we want a program called *fibonacci* that inputs a positive integer, n, and outputs the n^{th} number in the Fibonacci sequence.

(For example: *fibonacci*(1) outputs 0, *fibonacci*(7) outputs 8)

- (a) Write the program using **while** loops.
- (b) Write the program using recursion.