## Problem of the Month Problem 0: September 2023

In this problem, f will always be a function defined by  $f(r) = \frac{ar+b}{cr+d}$  where a, b, c, and d are integers. These integers will vary throughout the parts of the problem.

Given such a function f and a rational number  $r_1$ , we can generate a sequence  $r_1, r_2, r_3, \ldots$  by taking  $r_n = f(r_{n-1})$  for each  $n \geq 2$ . That is,  $r_2 = f(r_1)$ ,  $r_3 = f(r_2)$ ,  $r_4 = f(r_3)$ , and so on. Unless there is some point in the sequence where  $f(r_{n-1})$  is undefined, a sequence of this form can be made arbitrarily long.

These sequences behave in different ways depending on the function f and the starting value  $r_1$ . This problem explores some those behaviours.

- (a) Suppose  $f(r) = \frac{2r-1}{r+2}$ .
  - (i) With  $r_1 = \frac{3}{2}$ , compute  $r_2$ ,  $r_3$ , and  $r_4$ .
  - (ii) Find a rational number  $r_1$  with the property that  $r_2$  is defined, but  $r_3$  is not defined.
- (b) Suppose  $f(r) = \frac{r+3}{2r-1}$ .
  - (i) With  $r_1 = \frac{3}{7}$ , compute  $r_2$ ,  $r_3$ ,  $r_4$ , and  $r_5$ .
  - (ii) Determine all rational values of  $r_1$  with the property that there is some integer  $n \ge 1$  for which  $f(r_n)$  is undefined. For all other values of  $r_1$ , find simplified formulas for  $r_{2023}$  and  $r_{2024}$  in terms of  $r_1$ .
- (c) Suppose  $f(r) = \frac{r+2}{r+1}$ .
  - (i) With  $r_1 = 1$ , compute  $r_2$  through  $r_9$ . Write down decimal approximations of  $r_2$  through  $r_9$  (after computing them exactly).
  - (ii) Suppose r is a positive rational number. Prove that

$$\left| \frac{f(r) - \sqrt{2}}{r - \sqrt{2}} \right| = \left| \frac{1 - \sqrt{2}}{r + 1} \right|$$

- (iii) Suppose  $r_1$  is a positive rational number. Prove that  $|r_n \sqrt{2}| < \frac{1}{2^{n-1}} |r_1 \sqrt{2}|$  for each  $n \geq 2$ . Use this result to convince yourself that as n gets large,  $r_n$  gets close to  $\sqrt{2}$ , regardless of the choice of the positive value  $r_1$ . Can you modify f slightly so that the sequence always approaches  $\sqrt{3}$ ?
- (d) Explore the behaviour of the sequences generated by various values of  $r_1$  for each of the functions below. Detailed solutions will not be provided, but a brief discussion will.

$$f(r) = \frac{r-3}{r-2}$$
,  $f(r) = \frac{r-1}{5r+3}$ ,  $f(r) = \frac{r-1}{r+2}$ ,  $f(r) = \frac{2r+2}{3r+3}$ ,  $f(r) = \frac{r+1}{r-2}$