
Problem of the Month
Solution to Problem 8: May 2024

(a) Suppose an m×n grid with a 1 or −1 in every cell is a Griffin Grid. Consider an arbitrary
cell C and suppose it contains the integer a (so a = 1 or a = −1). Let b be the product of
the integers in the neighbours of C. Since the grid is a Griffin Grid, we have a = b. The
product of the integers in the neighbourhood of C is ab = a2 = 1, since 12 = (−1)2 = 1.

Now suppose an m × n grid has a 1 or a −1 in every cell and that the product of the
integers in every neighbourhood is 1. Let C be an arbitrary cell, let a be the integer in C,
and let b be the product of the integers in the neighbours of C. To verify that the grid is
a Griffin Grid, we need to show that a = b.

We are assuming that ab = 1, and we know that a = ±1 and b = ±1 because it is the
product of some integers, all of which are either 1 or −1. If a and b were different, then
their product would be −1, not 1. Therefore, a = b.

(b) Using similar reasoning to that which was used in part (a), it can be shown that an m×n
grid with 1 or −1 in every cell is a Griffin Grid if and only if for every neighbourhood in
the grid, the integer in each cell in the neighbourhood is equal to the product of the other
cells in that neighbourhood.

In any 2 × n grid with 1 or −1 in every cell, there are only four possibilities for the first
column. They are shown below
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As suggested in the hint, we will now try to understand Griffin Grids with 2 rows and
infinitely many columns. We will refer to such a grid as a 2×∞ Griffin Grid.

The second column can be completely determined from the first column using the ob-
servation at the beginning of this part of the solution. Specifically, consider the two
neighbourhoods highlighted below:

· · · · · ·

In both of these three-cell neighbourhoods, the integer in the second column is equal to
the product of the integers in the first column. Thus, for each of the four possible first
columns, we can compute the second column as follows:
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From here, we can see that there is exactly one 2 × 2 Griffin Grid. This is because there
are only four possible ways to fill in the first column, and if a 2× 2 grid is to be a Griffin
Grid, then its second column must be filled in according to the appropriate grid above. If
we imagine “chopping off” the first two columns of the infinite grids above, only the first
of the four 2× 2 grids gives a Griffin Grid.

Continuing in this way, we can examine 2× 3 Griffin Grids by filling in the next column.
This can be done using the neighbourhoods shown below.

· · · · · ·

Similar to before, the integers in these neighbourhoods that are in the third column are
equal to the product of the integers (in the respective neighbourhood) in the first two
columns. Thus, if the cells in the first two columns contain the integers a, b, c, and d, as
shown, then the cells in the third column are as shown.
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However, we can simplify this a little bit. From earlier, we know that c = d = ab. As well,
a2 = b2 = c2 = d2 = 1 since each of the variables a, b, c, and d can only take the values
1 and −1. Therefore, acd = a(ab)(ab) = aa2b2 = a and bcd = b(ab)(ab) = ba2b2 = b. We
now have the following simpler and completely general version of the first three columns
of a 2×∞ Griffin Grid.
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In the same way that the third column was computed from the first and second columns,
we can compute the fourth column from the second and third columns. After doing this,
we get the diagram below. There is a thick vertical line separating the first three columns
from the rest of the 2×∞ grid.
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Consider the six cells to the left of the thick line as a 2× 3 grid. The four integers in the
first two columns are equal to the products of their neighbours by construction. Denote by
C the cell in the first row and the third column. The integer in C is a. By construction,
the 1 to its right has been chosen so that the product of the neighbourhood of C, including
the 1 to its right, is 1. However, this means the product of the cells in its neighbourhood
that are to the left of the vertical line is also equal to 1 (since 1 divided by 1 is 1). These
three cells (left of C, below C, and C itself) contain integers that have a product of 1.

2



A similar argument can be used on the cell below C to confirm that the 2× 3 grid to the
left of the thick line is a Griffin Grid. This is completely independent of the choice of a
and b. There are two possibilities for each of a and b, so there are 2× 2 = 4 Griffin Grids
of size 2× 3. They are
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This approach can be generalized to determine the number of 2 × n Griffin Grids. To
explain this, we first continue to fill out a few more columns in the 2 ×∞ grid. We will
call the Griffin Grid filled in by starting with variables in the first column and letting them
propagate in the way described above the 2×∞ variable Griffin Grid.
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By similar reasoning to before, the first n columns of a 2×∞ Griffin Grid will form a 2×n
Griffin Grid exactly when both integers in the (n+1)st column equal 1. If we examine the
2×∞ variable Griffin Grid, the number of ways to assign values to a and b so that both
integers in the (n+ 1)st column are 1 will be equal to the number of 2× n Griffin Grids.

For example, to count the 2 × 5 Griffin Grids, we look at the 6th column of the 2 × ∞
variable Griffin Grid. Both cells contain ab. Thus, the first five columns form a 2 × 5
Griffin Grid if and only if ab = 1. This happens when a = b = 1 and when a = b = −1, so
there are exactly two 2× 5 Griffin Grids. Similarly, to count 2× 4 Griffin Grids, we count
the number of ways to choose a and b so that the 5th column of the 2×∞ variable Griffin
Grid contains only 1. The 5th column contains a and b, so we get a 2× 4 Griffin Grid only
when a = b = 1. Thus, there is exactly one 2× 4 Griffin Grid.

Now notice that the columns of the 2×∞ variable Griffin Grid appear to repeat. Indeed,
since each column after the second is computed from the previous two columns, as soon
as a pair of two consecutive columns appears for a second time, the columns must repeat.
The first and second columns are identical to the fifth and sixth columns, so the columns
in the 2×∞ variable Griffin Grid must repeat with period 4. This means the number of
2× n Griffin Grids is always the same as the number of 2× (n+ 4) Griffin Grids.

The number of 2×1 Griffin Grids is 2 (this can be seen using the method described above).
The number of 2×2 Griffin Grids is 1 (this was noted earlier but can also be checked using
the method described above). The number of 2× 3 Griffin Grids is 4, and the number of
2× 4 Griffin Grids is 1. This repeats, so we get the following:

(i) If n is even, then there is only one 2× n Griffin Grid.

(ii) If n is one more than a multiple of 4, then there are two 2× n Griffin Grids.

(iii) If n is three more than a multiple of 4, then there are four 2× n Griffin Grids.

As with 2 × n Griffin Grids, we can fill in the 3 × ∞ variable Griffin Grid starting with
a, b, and c in the first column. As before, we can assume a2 = b2 = c2 = 1. Filling out
subsequent columns until we see a repetition, we get
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To determine the number of 3×1 Griffin Grids, we need to find all ways to choose a, b, and
c so that the integers in the second column are all 1. In other words, we need all solutions
to the system of

ab = 1

abc = 1

bc = 1

where a, b, and c are all ±1.

The equations ab = 1 and abc = 1 can be multiplied to get ababc = 1 or a2b2c = 1, so c = 1.
We can multiply this equation by bc = 1 to get bc2 = 1 or b = 1. Finally, multiplying
bc = 1 by abc = 1 gives ab2c2 = 1 so a = 1. This method of solving probably seems
unnecessarily complicated, but it generalizes nicely. We have shown that the only solution
to the system is a = b = c = 1. Therefore, there is only one 3× 1 Griffin Grid.

To determine the number of 3× 2 Griffin Grids, we need to count the number of ways to
choose a, b, and c to each be ±1 so that the entries in the third column are all 1. The
middle integer is always 1, so this cell is 1 regardless of how a, b, and c are chosen. The
other two equations are both ac = 1, so this time the number of Griffin Grids is equal to
the number of solutions to the system with just the equation ac = 1, where a, b, and c
must all be ±1.

This system does not restrict b beyond b = ±1. For ac = 1, we need either a = c = 1 or
a = c = −1. This means there are 2×2 = 4 solutions (2 choices for b and two independent
choices for the equal value of a and c). There are four 3× 2 Griffin Grids.

Continuing in this way, we can count the number of Griffin Grids of size 3 × n for n = 1
through n = 12. After that the number of Griffin Grids repeats with period 12. The
number of 3× n Griffin Grids are summarized in the table below.

n # of 3× n Griffin Grids

1, 3, 4, 6, 7, 9, 10, or 12 more than a multiple of 12 1
2 or 8 more than a multiple of 12 4
5 or 11 more than a multiple of 12 8

Finally, we leave as an exercise that the number of Griffin Grids of size 4× n is 16 if n is
a multiple of 4 and 1 otherwise.

(c) Suppose x1, x2, . . . , xk are variables and P1, P2, . . .Pr are each the product of some of the
xi. By convention, we consider a single variable to be a product. For example, it might be
that P3 = x9. We will also allow the Pi to be 1, the so-called “empty product”. We will
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show that the number of solutions to the system

P1 = 1

P2 = 1

...

Pr = 1

is a power of 2, provided each xi is restricted to the values 1 and −1. Since each xi = ±1,
we have that x2

i = 1, so we can assume that no equation mentions a variable more than
once. Following the work from part (b), the number of m×n Griffin Grids is always equal
to the number of solutions to such a system of equations, so this will prove that the number
of Griffin Grids is always a power of 2.

The key observation is the following: For any i with 1 ≤ i ≤ r, the system of equations
above has the exact same set of solutions as the system

P1 = 1

P2 = 1

...

Pi−1 = 1

P1Pi = 1

Pi+1 = 1

...

Pr = 1

That is, if we modify the system by multiplying one equation by another equation, the so-
lution set does not change. To see why this is true, we first suppose that (x1, x2, . . . , xm) =
(c1, c2, . . . , cm) is a solution to the original system. Every equation in the second sys-
tem appears in the original system except P1Pi = 1, so all equations in the second sys-
tem except P1Pi = 1 are automatically satisfied by the choice of the xi. By assump-
tion, P1 = 1 and Pi = 1, so we also have P1Pi = 1 as well. We have confirmed that
(x1, x2, . . . , xm) = (c1, c2, . . . , cm) is a solution to the second system.

A nearly identical argument shows that a solution to the second system is also a solution
to the first system, proving that the two systems have the exact same set of solutions.

We will now prove that the number of solutions is a power of 2 by induction on k, the
number of variables.

If k = 1, then the only possible equations are x1 = 1 and 1 = 1. If x1 = 1 appears,
then there is one solution. If x1 = 1 does not appear, then all equations are 1 = 1, so
the equations to not restrict the value of x1 beyond x1 = 1 and x1 = −1. Therefore, the
number of solutions is either 1 or 2, both of which is a power of 2.

Now suppose the number of solutions to such a system of equations in at most k − 1
variables is always a power of 2.

Consider a system of equations in k variables, x1 through xk. If it happens to be that
none of the equations mention xk, then the system can be viewed as having at most k− 1
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variables. By induction, the number of solutions to this system (with xk ignored) is a
power of 2. That is, the number of ways to choose values of x1 through xk−1 so that the
equations are all satisfied is 2d for some non-negative integer d.

Since xk is not mentioned in the equations, every one of these 2d solutions allows us to
choose xk = 1 or xk = −1. Therefore, the system has 2× 2d = 2d+1 solutions.

Now suppose xk appears in at least one equation. By possibly reordering the equations,
we can assume that P1 = 1 mentions the variable xk. Consider the system

P1 = 1

Q2 = 1

Q3 = 1

...

Qr = 1

where Qi = Pi if Pi does not mention xk, and Qi = P1Pi if Pi mentions xk. In other words,
equations from P2 through Pr that mention xk get multiplied by P1 and the others are left
alone. From earlier, the new system has the same solutions as the original system.

If Pi mentions xk, then it must mention it exactly once. This means the equation Qi = 1
mentions xk exactly twice, but these occurrences can be deleted since x2

k = 1.

The point is that we have converted the given system to a new system that has the same
solution set and P1 = 1 is the only equation that mentions xk. Now consider the system

Q2 = 1

Q3 = 1

...

Qr = 1

which does not mention xk. By induction, the number of solutions to this system is 2d for
some non-negative integer d. Each such solution to this smaller system is an assignment
of values to the variables x1 through xk−1. Once these values are chosen, the equation
P1 = 1, which mentions xk, will determine the value of xk.

Therefore, the number of solutions to the original system is 2d. Using induction, we
have now shown that the number of solutions to any system of this type is a power of 2.
Therefore, the number of m× n Griffin Grids is always a power of 2.

Finally, note that the system arising from the m×∞ variable Griffin Grid always has m
variables. There are at most 2m ways to assign a value of 1 or −1 to each variable, so the
number of solutions must be a power of 2 that is at most 2m.

(e) Once again, we imagine filling in the m×∞ variable Griffin Grid starting with variables
a1, a2, . . . , am in the first column.

Every cell in the grid contains either 1 or the product of some of a1 through am, where each
variable appears at most once in such a product. There are exactly 2m possible expressions
that can go in the cells. In any two consecutive columns, there are 2n cells, which means
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there are (2m)2n = 22mn possible ways that the 2n cells in two consecutive columns can be
filled. In practice, not all of these possibilities will actually occur.

Among the first 22mn + 2 columns, there are 22mn + 1 pairs of consecutive columns, which
means there must be two pairs of consecutive columns that are identical.

Since there are two identical pairs of consecutive columns, we can choose the earliest ones.
More precisely, let i be the smallest positive integer such that there is j > i with the
property that the ith column equals the jth column and the (i + 1)st column equals the
(j + 1)st column.

Suppose that i > 1. Let P1, P2, . . . , Pm the products in column i− 1 let Q1, Q2, . . . , Qm

be the products in column i, and let R1, R2, . . . , Rm be the products in column i+ 1.

By construction, we have that R1 = P1Q1Q2 (after possibly removing the squares of some
variables). This equation can be multiplied on both sides by Q1Q2 to get the equation
R1Q1Q2 = P1(Q1)

2(Q2)
2. Since the square of every variable in Q1 and Q2 is 1, we also

have (Q1)
2 = (Q2)

2 = 1, so P1 = Q1Q2R1.

We also have that R2 = P2Q1Q2Q3, and it similarly follows that P2 = Q1Q2Q3R2.

Continuing in this way, we get that each Pi can be computed in terms of the Qi and Ri.
In other words, column i− 1 can be computed directly from columns i and i+ 1.

Because of our assumptions about i and j, it follows that column i − 1 must be equal to
column j − 1. However, this means columns i− 1 and i are identical to columns j − 1 and
j, which contradicts the minimality of i.

We conclude that i > 1 is impossible, so it must be that i = 1 which means column j
equals column 1 and column j + 1 equals column 2.

Therefore, the products in column j are all single variables, and in fact, they are the
variables a1, a2, . . . , am in order from top to bottom. The only way to assign the variables
so that the entire column contains 1 is to set a1 = 1, a2 = 1, and so on to am = 1.
Therefore, there is exactly one m× (j − 1) Griffin Grid.

(f) Most of the work was done in part (e). Let’s assume that column j > 1 equals column 1
and column j+1 equals column 2. Thus, we are assuming that the entries in column j are
a1, a2, . . . , am from top to bottom and that the entries in column j + 1 are a1a2, a1a2a3,
a2a3a4, . . . , am−2am−1am, am−1am from top to bottom.

Suppose that P1, P2, . . . , Pm are the products in column j−1. The top cell in column j+1
contains a1a2 since column j + 1 equals column 2. The expression must also be a1a2P1 by
the way the m×∞ variable Griffin Grid is filled in. From a1a2 = a1a2P1, we get P1 = 1.

Looking at the second cell in column j+1, we have that it is equal to a1a2a3, but it is also
equal to P2a1a2a3, and so P2 = 1.

Continuing in this way, we get that every entry in column j − 1 equals 1. Since any
assignment of values to a1, a2, . . . , am will lead to column j− 1 having all 1s, we conclude
that there are 2m Griffin Grids of size m× (j − 2). As a final note, observe that column 1
and column 2 always (for every m) contain products that are not equal to 1, so we know
that j − 1 > 2, from which it follows that j − 2 > 1. This means we do not need to worry
about the possibility that j − 2 = 0.
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