Problem of the Week
 Problem B and Solution
 'Place' Value

Problem

Complete the puzzles below by entering the digits from 1 through 9 in the blank boxes to make all the horizontal and vertical statements true. In each puzzle, use each digit just once and do the operations in the order that they appear, from left to right and from top to bottom.
a)

	+	6	x		$=$	56
+		+		-		
	-		+		$=$	12
\div		x		x		
	+		-		$=$	4
$=$		$=$		$=$		
5		50		3		

b)

	+		x		$=$	52
+		-		+		
	-		+		$=$	14
\div		x		\div		
7	+		\div		$=$	5
$=$		$=$		$=$		
		21		5		

In puzzle a), the location of the digit 6 has been given, so the eight empty boxes each contain a different digit from 1 through 9 , other than 6 . In puzzle b), the location of the digit 7 has been given, so the eight empty boxes each contain a different digit from 1 through 9 , other than 7 .

Solution

First, we will give you the final grids.
a)

1	+	6	x	8	$=$	56
+		+		-		
9	-	4	+	7	$=$	12
-		x		x		
2	+	5	-	3	$=$	4
$=$		$=$		$=$		
5		50		3		

b)

5	+	8	x	4	$=$	52
+		-		+		
9	-	1	+	6	$=$	14
\div		\times		\div		
7	+	3	\div	2	$=$	5
$=$		$=$		$=$		
2		21		5		

On the next page we will give a solution for each grid.

For puzzle a):

Label the unknown values with the letters shown below.

a	+	6	\times	b	$=$	56
+		+		-		
c	-	d	+	e	$=$	12
\div		\times		\times		
f	+	g	-	h	$=$	4
$=$	$=$	$=$				
5		50	3			

Let's start with g. From the second column, we see that g must be 1,2 , or 5 , since these are the only digits that divide into 50 .
If $g=1$, then $6+d$ must be 50 . This is not possible since d must be a single digit.
If $g=2$, then $6+d$ must be 25 . This is not possible since d must be a single digit.
If $g=5$, then since $10 \times 5=50,6+d$ must be 10 , and so $d=4$. This is possible.
Therefore $g=5$ and $d=4$. We add these to the grid.

For puzzle b):

Label the unknown values with the letters shown below.

A	+	B	\times	C	$=$	52
+		-		+		
D	-	E	+	F	$=$	14
\div		\times		\div		
7	+	G	\div	H	$=$	5
$=$	$=$		$=$			
2	21		5			

Let's start with G. From the second column, G must be a 1,3 or 7 since they are the only single digits that divide into 21.
If $G=1$, then $B-E$ must be 21 . This is not possible since B and E must be single digits.
Also, G cannot be 7 since the digit 7 is already in the grid.
Therefore, $G=3$. Looking at the third row, since $G=3$ and $10 \div 2=5$, then $H=2$. We add these to the grid.

