Problem of the Week<br>Problem B and Solution<br>What's for Lunch?

## Problem

Sanji and his 34 classmates always bring sandwiches to school for lunch. One day, everyone brought either a jelly sandwich, or a ham and cheese sandwich, or a tuna salad sandwich.
If the number of students who brought jelly sandwiches $(J)$ was twice the number who brought ham and cheese $(H)$, and four times the number who brought tuna salad $(T)$, how many sandwiches were there of each type?

Hint: What should the total number of sandwiches be?
You may find the table useful for the 'guess and check' method.

| $T$ | $H$ | $J$ | Total |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 7 |
| 2 | 4 | 8 | 14 |
| 3 | 6 | 12 | 21 |
| 4 | 8 | 16 | 28 |
| 5 | 10 | 20 | 35 |
| 6 | 12 | 24 | 42 |



## Solution

## Solution 1:

There are a total of $34+1=35$ students. Therefore, there must be 35 sandwiches. The completed table reveals that the only possible combination is 5 tuna salad, 10 ham and cheese, and 20 jelly sandwiches, in order to give the correct total number of 35 sandwiches.

## Solution 2:

An alternate, algebraic solution is presented below. The algebra used in this solution may be beyond what students at this age have typically seen.
We are given that $J=4 \times T$ and $J=2 \times H$. This means that $H=2 \times T$.
We now have

$$
J+H+T=4 \times T+2 \times T+T=7 \times T
$$

But $J+H+T=7 \times T$ is also equal to the total number of students.
Thus, $35=7 \times T$, which gives $T=5$.
Since $T=5$, we get $H=2 \times 5=10$, and $J=4 \times 5=20$.
Therefore, 5 students brought a tuna salad sandwich, 10 students brought a ham and cheese sandwich, and 20 students brought a jelly sandwich.

