100 Problem of the Week Problem C and Solution Order Up!

Problem

The letters w, x, y, and z each represent a different positive integer greater than 3 . If we know that

$$
\frac{1}{w-3}=\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z-2}
$$

then write w, x, y, and z in order from the letter that represents the smallest integer to the letter that represents the largest integer.

Solution

Solution 1:

Since the fractions are all equal and they all have a numerator of 1 , that means that their denominators must all be equal. So $w-3=x+1=y+2=z-2$.
Now let's suppose that $w=10$. Then $w-3=10-3=7$.
So $7=x+1=y+2=z-2$. We can make the following conclusions.

- Since $7=x+1$, that means $x=7-1=6$.
- Since $7=y+2$, that means $y=7-2=5$.
- Since $7=z-2$, that means $z=7+2=9$.

So when $w=10$, we have $x=6, y=5$, and $z=9$. We can see that x is four less than w, y is five less than w, and z is one less than w. So when we write these in order from smallest to largest, we get y, x, z, w.

Solution 2:

As with Solution 1, we notice that since the fractions are all equal and they all have a numerator of 1 , that means that their denominators must all be equal.
So $w-3=x+1=y+2=z-2$. Let's add 3 to each expression.

$$
\begin{array}{ccc}
w-3= & x+1=y+2=z-2 \\
\downarrow+3 \\
w+3 & \downarrow+3 \\
w= & \downarrow+3 \\
w+4=y+5=z+1
\end{array}
$$

From this we can make the following conclusions.

- Since $w=z+1$, that means w is 1 more than z, so $w>z$.
- Since $z+1=x+4$, that means z is 3 more than x, so $z>x$.
- Since $x+4=y+5$, that means x is 1 more than y, so $x>y$.

So when we write these in order from smallest to largest, we get y, x, z, w.

