Problem of the Week
Problem C and Solution
Locate the Fourth Vertex

Problem

Quadrilateral $B D F H$ is constructed so that each vertex is on a different side of square $A C E G$. Vertex B is on side $A C$ so that $A B=4 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Vertex F is on $E G$ so that $E F=3 \mathrm{~cm}$ and $F G=7 \mathrm{~cm}$. Vertex H is on $G A$ so that $G H=4 \mathrm{~cm}$ and $H A=6 \mathrm{~cm}$. The area of quadrilateral $B D F H$ is $47 \mathrm{~cm}^{2}$.

The fourth vertex of quadrilateral $B D F H$, labelled D, is located on side $C E$ so that the lengths of $C D$ and $D E$ are both positive integers.

Determine the lengths of $C D$ and $D E$.

Solution
 Solution 1

Since $A C E G$ is a square and the length of
$A G=A H+H G=6+4=10 \mathrm{~cm}$, then the length of each side of the square is 10 cm and the area is $10 \times 10=100 \mathrm{~cm}^{2}$.

We can determine the area of triangles $B A H$ and $F G H$ using the formula area $=\frac{\text { base } \times \text { height }}{2}$.
In $\triangle B A H$, since $B A$ is perpendicular to $A H$, we can use $B A$ as the height and $A H$ as the base. The area of $\triangle B A H$ is $\frac{6 \times 4}{2}=12 \mathrm{~cm}^{2}$.

In $\triangle F G H$, since $F G$ is perpendicular to $G H$, we can use $F G$ as the height and $G H$ as the base. The area of $\triangle F G H$ is $\frac{4 \times 7}{2}=14 \mathrm{~cm}^{2}$.
The area of $\triangle B C D$ plus the area of $\triangle F E D$ must be the total area minus the three known areas. That is,
Area $\triangle B C D+$ Area $\triangle F E D=100-12-47-14=27 \mathrm{~cm}^{2}$.

$C D$ and $D E$ are both positive integers and $C D+D E=10$. We will systematically check all possible values for $C D$ and $D E$ to determine the values which produce the correct area.

$C D$	$D E$	Area $\triangle B C D$	Area $\triangle F E D$	Area $\triangle B C D+$ Area $\triangle F E D$
1	9	$1 \times 6 \div 2=3$	$9 \times 3 \div 2=13.5$	$3+13.5=16.5 \neq 27$
2	8	$2 \times 6 \div 2=6$	$8 \times 3 \div 2=12$	$6+12=18 \neq 27$
3	7	$3 \times 6 \div 2=9$	$7 \times 3 \div 2=10.5$	$9+10.5=19.5 \neq 27$
4	6	$4 \times 6 \div 2=12$	$6 \times 3 \div 2=9$	$12+9=21 \neq 27$
5	5	$5 \times 6 \div 2=15$	$5 \times 3 \div 2=7.5$	$15+7.5=22.5 \neq 27$
6	4	$6 \times 6 \div 2=18$	$4 \times 3 \div 2=6$	$18+6=24 \neq 27$
7	3	$7 \times 6 \div 2=21$	$3 \times 3 \div 2=4.5$	$21+4.5=25.5 \neq 27$
8	2	$8 \times 6 \div 2=24$	$2 \times 3 \div 2=3$	$24+3=27$
9	1	$9 \times 6 \div 2=27$	$1 \times 3 \div 2=1.5$	$27+1.5=28.5 \neq 27$

Therefore, when $C D=8 \mathrm{~cm}$ and $D E=2 \mathrm{~cm}$, the area of quadrilateral $B D F H$ is $47 \mathrm{~cm}^{2}$.
The second solution is more algebraic and will produce a solution for any lengths of $C D$ and $D E$ between 0 and 10 cm .

Solution 2

This solution begins the same as Solution 1. Algebra is introduced to complete the solution. Since $A C E G$ is a square and the length of $A G=A H+H G=6+4=10 \mathrm{~cm}$, then the length of each side of the square is 10 cm and the area is $10 \times 10=100 \mathrm{~cm}^{2}$.
We can determine the area of the triangles $B A H$ and $F G H$ using the formula $\frac{\text { base } \times \text { height }}{2}$. In $\triangle B A H$, since $B A$ is perpendicular to $A H$, we can use $B A$ as the height and $A H$ as the base. The area of $\triangle B A H$ is $\frac{6 \times 4}{2}=12 \mathrm{~cm}^{2}$.
In $\triangle F G H$, since $F G$ is perpendicular to $G H$, we can use $F G$ as the height and $G H$ as the base. The area of $\triangle F G H$ is $\frac{4 \times 7}{2}=14 \mathrm{~cm}^{2}$.
The area of $\triangle B C D$ plus the area of $\triangle F E D$ must be the total area minus the three known areas. That is, Area $\triangle B C D+$ Area $\triangle F E D=100-12-47-14=27 \mathrm{~cm}^{2}$.

Let the length of $C D$ be $n \mathrm{~cm}$. Then the length of $D E$ is $(10-n) \mathrm{cm}$.
The area of $\triangle B C D$ is $\frac{B C \times C D}{2}=\frac{6 \times n}{2}=3 n$.
The area of $\triangle F E D$ is $\frac{F E \times D E}{2}=\frac{3 \times(10-n)}{2}=\frac{10-n+10-n+10-n}{2}=\frac{30-3 n}{2}$. Therefore,

$$
\text { Area } \begin{aligned}
\triangle B C D+\text { Area } \triangle F E D & =27 \\
3 n+\frac{30-3 n}{2} & =27 \\
2 n+30-3 n & =54 \\
3 n+30 & =54 \\
3 n & =24 \\
n & =8
\end{aligned}
$$

Therefore, the length of $C D$ is 8 cm and the length of $D E$ is 2 cm .
The algebra presented in Solution 2 may not be familiar to all students at this level.

