$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$ $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$ $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$ $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$
$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5 \times$ $5 \times 5 \times 5$.

Problem of the Week Problem C and Solution
 More Power to You

Problem

In mathematics we like to write expressions concisely. For example, we will often write the expression $5 \times 5 \times 5 \times 5$ as 5^{4}. The lower number 5 is called the base, the raised 4 is called the exponent, and the whole expression 5^{4} is called a power. So 5^{3} means $5 \times 5 \times 5$ and is equal to 125. What are the last three digits in the integer equal to 5^{2020} ?

Solution

Let's start by examining the last three digits of various powers of 5 .

$$
\begin{array}{llr}
5^{1}= & \mathbf{0 0 5} \\
5^{2} & = & \mathbf{0 2 5} \\
5^{3} & = & \mathbf{1 2 5} \\
5^{4} & = & \mathbf{6 2 5} \\
5^{5} & = & 31 \mathbf{2 5} \\
5^{6}= & 15 \mathbf{6 2 5} \\
5^{7} & = & 78 \mathbf{1 2 5} \\
5^{8} & = & 390 \mathbf{6 2 5}
\end{array}
$$

Notice that there is a pattern for the last three digits after the first two powers of 5 . For every odd integer exponent greater than 2 , the last three digits are " 125 ". For every even integer exponent greater than 2 , the last three digits are " 625 ". If the pattern continues, then 5^{9} will end " 125 " since the exponent 9 is odd and 5^{10} will end " 625 " since the exponent 10 is even. This is easily verified since $5^{9}=1953125$ and $5^{10}=9765625$.

We can easily justify why this pattern continues. If a power ends in " 125 ", then the last 3 digits of the next power are the same as the last three digits of the product $125 \times 5=625$. That is, the last three digits of the next power are " 625 ". If a power ends in " 625 ", then the last 3 digits of the next power are the same as the last three digits of the product $625 \times 5=3125$. That is, the last three digits of the next power are " 125 ".
For 5^{2020}, the exponent 2020 is greater than 2 and is an even number.
Therefore, the last three digits of 5^{2020} are 625 .

