Problem

Problem of the Week Problem C and Solution

 Angled

 Angled}

In $\triangle P Q S$ above, R lies on $P Q$ such that $P R=R Q=R S$ and $\angle Q R S=70^{\circ}$.
Determine the measure of $\angle P S Q$.

Solution

Solution 1

In $\triangle P R S$, since $P R=R S, \triangle P R S$ is isosceles and $\angle R P S=\angle R S P=x^{\circ}$.
Similarly, in $\triangle Q R S$, since $R Q=R S, \triangle Q R S$ is isosceles and $\angle R Q S=\angle R S Q=y^{\circ}$.

Since $P R Q$ is a straight line, $\angle P R S+\angle Q R S=180^{\circ}$. Since $\angle Q R S=70^{\circ}$, we have $\angle P R S=110^{\circ}$.
The angles in a triangle sum to 180°, so in $\triangle P R S$

$$
\begin{aligned}
\angle R P S+\angle R S P+\angle P R S & =180^{\circ} \\
x^{\circ}+x^{\circ}+110^{\circ} & =180^{\circ} \\
2 x & =70 \\
x & =35
\end{aligned}
$$

The angles in a triangle sum to 180°, so in $\triangle Q R S$

$$
\begin{aligned}
\angle R Q S+\angle R S Q+\angle Q R S & =180^{\circ} \\
y^{\circ}+y^{\circ}+70^{\circ} & =180^{\circ} \\
2 y & =110 \\
y & =55
\end{aligned}
$$

Then $\angle P S Q=\angle R S P+\angle R S Q=x^{\circ}+y^{\circ}=35^{\circ}+55^{\circ}=90^{\circ}$.
Therefore, the measure of $\angle P S Q$ is 90°.
See Solution 2 for a more general approach to the solution of this problem.

It turns out that it is not necessary to determine the values of x and y to solve this problem.

Solution 2

In $\triangle P R S$, since $P R=R S, \triangle P R S$ is isosceles and $\angle R P S=\angle R S P=x^{\circ}$.

Similarly, in $\triangle Q R S$, since $R Q=R S, \triangle Q R S$ is isosceles and $\angle R Q S=\angle R S Q=y^{\circ}$.

The angles in a triangle sum to 180°, so in $\triangle P Q S$

$$
\begin{aligned}
\angle Q P S+\angle P S Q+\angle P Q S & =180^{\circ} \\
x^{\circ}+\left(x^{\circ}+y^{\circ}\right)+y^{\circ} & =180^{\circ} \\
\left(x^{\circ}+y^{\circ}\right)+\left(x^{\circ}+y^{\circ}\right) & =180^{\circ} \\
2\left(x^{\circ}+y^{\circ}\right) & =180^{\circ} \\
x^{\circ}+y^{\circ} & =90^{\circ}
\end{aligned}
$$

But $\angle P S Q=\angle R S P+\angle R S Q=x^{\circ}+y^{\circ}=90^{\circ}$.
Therefore, the measure of $\angle P S Q$ is 90°.

