

Problem of the Week Problem C and Solution Angled

Problem

In $\triangle PQS$ above, R lies on PQ such that PR = RQ = RS and $\angle QRS = 70^{\circ}$. Determine the measure of $\angle PSQ$.

Solution

Solution 1

In $\triangle PRS$, since PR = RS, $\triangle PRS$ is isosceles and $\angle RPS = \angle RSP = x^{\circ}$.

Similarly, in $\triangle QRS$, since RQ = RS, $\triangle QRS$ is isosceles and $\angle RQS = \angle RSQ = y^{\circ}$.

Since PRQ is a straight line, $\angle PRS + \angle QRS = 180^{\circ}$. Since $\angle QRS = 70^{\circ}$, we have $\angle PRS = 110^{\circ}$.

The angles in a triangle sum to 180° , so in $\triangle PRS$

$$\angle RPS + \angle RSP + \angle PRS = 180^{\circ} x^{\circ} + x^{\circ} + 110^{\circ} = 180^{\circ} 2x = 70 x = 35$$

The angles in a triangle sum to 180° , so in $\triangle QRS$

$$\begin{split} \angle RQS + \angle RSQ + \angle QRS &= 180^{\circ} \\ y^{\circ} + y^{\circ} + 70^{\circ} &= 180^{\circ} \\ 2y &= 110 \\ y &= 55 \end{split}$$

Then $\angle PSQ = \angle RSP + \angle RSQ = x^{\circ} + y^{\circ} = 35^{\circ} + 55^{\circ} = 90^{\circ}.$
Therefore, the measure of $\angle PSQ$ is 90°.

See Solution 2 for a more general approach to the solution of this problem.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

It turns out that it is not necessary to determine the values of x and y to solve this problem.

Solution 2

In $\triangle PRS$, since PR = RS, $\triangle PRS$ is isosceles and $\angle RPS = \angle RSP = x^{\circ}$.

Similarly, in $\triangle QRS$, since RQ = RS, $\triangle QRS$ is isosceles and $\angle RQS = \angle RSQ = y^{\circ}$.

The angles in a triangle sum to 180°, so in $\triangle PQS$

$$\angle QPS + \angle PSQ + \angle PQS = 180^{\circ} x^{\circ} + (x^{\circ} + y^{\circ}) + y^{\circ} = 180^{\circ} (x^{\circ} + y^{\circ}) + (x^{\circ} + y^{\circ}) = 180^{\circ} 2(x^{\circ} + y^{\circ}) = 180^{\circ} x^{\circ} + y^{\circ} = 90^{\circ}$$

But $\angle PSQ = \angle RSP + \angle RSQ = x^{\circ} + y^{\circ} = 90^{\circ}.$

Therefore, the measure of $\angle PSQ$ is 90°.