

Problem of the Week Problem C and Solution
 Around the Farm

Problem

Rahul has a farm he wishes to fence. The farm is the pentagon $A B C D E$, shown above. He knows that $A B C D$ is a 140 m by 150 m rectangle, as shown below. He also knows that E is 50 m from the side $A B$ and 30 m from the side $B C$.
Determine the length of $A E$, the length of $D E$, and the perimeter of pentagon $A B C D E$.

Solution

Let F be the point on $A B$ with $E F=50 \mathrm{~m}$.
Let H be the point on $B C$ with $E H=30 \mathrm{~m}$.
Extend $E F$ to G on $C D$.
Since $A B C D$ is a rectangle and $F G$ is perpendicular to $A B$, then $F G$ is perpendicular to $C D$ and $F G C B$ is a rectangle. Therefore, $F B=E H=G C=30 \mathrm{~m}$.
Also, $D G=A F=A B-F B=150-30=120 \mathrm{~m}$.

Since $\triangle A F E$ and $\triangle D G E$ are right-angled triangles, we can use the Pythagorean Theorem to determine the lengths of $A E$ and $D E$.

In $\triangle A F E$,

$$
\begin{aligned}
A E^{2} & =A F^{2}+F E^{2} \\
& =120^{2}+50^{2} \\
& =14400+2500 \\
& =16900 \\
A E & =130, \text { since } A E>0
\end{aligned}
$$

In $\triangle D G E$,

$$
\begin{aligned}
D E^{2} & =D G^{2}+E G^{2} \\
& =120^{2}+90^{2} \\
& =14400+8100 \\
& =22500 \\
D E & =150, \text { since } D E>0
\end{aligned}
$$

Therefore, $A E=130 \mathrm{~m}$ and $D E=150 \mathrm{~m}$.
Also, the perimeter of pentagon $A B C D E$ is equal to
$A B+B C+C D+D E+A E=150+140+150+150+130=720 \mathrm{~m}$.

