

Problem of the Week Problem C and Solution Around the Farm

Problem

Rahul has a farm he wishes to fence. The farm is the pentagon ABCDE, shown above. He knows that ABCD is a 140 m by 150 m rectangle, as shown below. He also knows that E is 50 m from the side AB and 30 m from the side BC.

Determine the length of AE, the length of DE, and the perimeter of pentagon ABCDE.

Solution

Let F be the point on AB with EF = 50 m.

Let H be the point on BC with EH = 30 m.

Extend EF to G on CD.

Since ABCD is a rectangle and FG is perpendicular to AB, then FG is perpendicular to CD and FGCB is a rectangle.

Therefore, FB = EH = GC = 30 m.

Also,
$$DG = AF = AB - FB = 150 - 30 = 120 \text{ m}.$$

Since $\triangle AFE$ and $\triangle DGE$ are right-angled triangles, we can use the Pythagorean Theorem to determine the lengths of AE and DE.

In $\triangle AFE$,

$$AE^{2} = AF^{2} + FE^{2}$$

 $= 120^{2} + 50^{2}$
 $= 14400 + 2500$
 $= 16900$
 $AE = 130, \text{ since } AE > 0$

In $\triangle DGE$,

$$DE^{2} = DG^{2} + EG^{2}$$

$$= 120^{2} + 90^{2}$$

$$= 14400 + 8100$$

$$= 22500$$

$$DE = 150, \text{ since } DE > 0$$

Therefore, AE = 130 m and DE = 150 m.

Also, the perimeter of pentagon ABCDE is equal to

$$AB + BC + CD + DE + AE = 150 + 140 + 150 + 150 + 130 = 720 \text{ m}.$$