Problem of the Week

$\$ 2$ Problem D and Solution \$5

Stacks and Stacks

Problem

Virat has a large collection of $\$ 2$ bills and $\$ 5$ bills. He makes stacks that have a value of $\$ 100$. Each stack has a least one $\$ 2$ bill, at least one $\$ 5$ bill, and no other types of bills. If each stack has a different number of $\$ 2$ bills than any other stack, what is the maximum number of stacks that Virat can create?

Solution

Consider a stack of bills with a total value of $\$ 100$ that includes $x \$ 2$ bills and y $\$ 5$ bills. The $\$ 2$ bills are worth $\$ 2 x$ and the $\$ 5$ bills are worth $\$ 5 y$, and so $2 x+5 y=100$.
Determining the number of possible stacks that the teller could have is equivalent to determining the numbers of pairs (x, y) of integers with $x \geq 1$ and $y \geq 1$ and $2 x+5 y=100$ or $5 y=100-2 x$. (We must have $x \geq 1$ and $y \geq 1$ because each stack includes at least one $\$ 2$ bill and at least one $\$ 5$ bill.)

Since $x \geq 1$, then:

$$
\begin{aligned}
2 x & \geq 2 \\
2 x+98 & \geq 100 \\
98 & \geq 100-2 x
\end{aligned}
$$

This can be rewritten as $100-2 x \leq 98$.
Also, since $5 y=100-2 x$, this becomes $5 y \leq 98$.
This means that $y \leq \frac{98}{5}=19.6$. Since y is an integer, then $y \leq 19$.
Notice that since $5 y=100-2 x$, then the right side is the difference between two even integers and is therefore even. This means that $5 y$ (the left side) is itself even, which means that y must be even.
Since y is even, $y \geq 1$, and $y \leq 19$, then the possible values of y are $2,4,6,8,10$, $12,14,16,18$.

Each of these values gives a pair (x, y) that satisfies the equation $2 x+5 y=100$. These ordered pairs are:
$(x, y)=(45,2),(40,4),(35,6),(30,8),(25,10),(20,12),(15,14),(10,16),(5,18)$
Therefore, we see that the maximum number of stacks that Virat could have is 9 .

