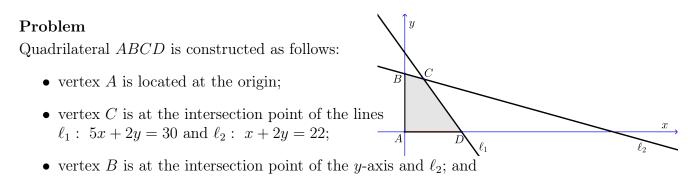
Problem of the Week Problem D and Solution The Area Within



• vertex D is at the intersection point of the x-axis and ℓ_1 .

Determine the area of ABCD.

Solution

Let the coordinates of C be (h, k) where h is the horizontal distance from the y-axis to C and k is the vertical distance from the x-axis to C.

To find the coordinates of D, let y = 0 in 5x + 2y = 30. Therefore, the x-intercept is 6 and the coordinates of D are (6, 0).

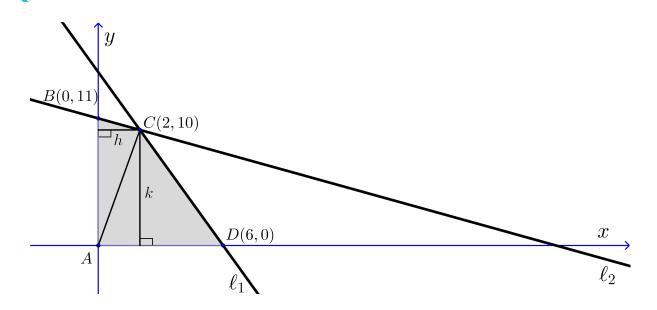
To find the coordinates of B, let x = 0 in x + 2y = 22. Therefore, the y-intercept is 11 and the coordinates of B are (0, 11).

Two methods are provided to find C, the point of intersection of ℓ_1 and ℓ_2 .

- Solving for C using the method of substitution: Rewrite equation l₂ as x = 22 - 2y. Substitute for x in l₁ so that 5(22 - 2y) + 2y = 30. Simplifying, 110 - 10y + 2y = 30. This further simplifies to -8y = -80 and y = 10. Substituting y = 10 in x + 2y = 22 gives x + 20 = 22 and x = 2. The coordinates of C, the point of intersection of l₁ and l₂, are (2, 10). Therefore, h = 2 and k = 10.
- 2. Solving for C using the method of elimination:

 $\ell_1: \quad 5x + 2y = 30$ $\ell_2: \quad x + 2y = 22$ Subtracting, we obtain, 4x = 8Therefore, x = 2

Substituting x = 2 in l_1 , 10 + 2y = 30 and y = 10. The coordinates of C, the point of intersection of ℓ_1 and ℓ_2 , are (2, 10). Therefore, h = 2 and k = 10.



Quadrilateral ABCD can be divided into two triangles, $\triangle ABC$ and $\triangle ACD$. Therefore,

Area
$$ABCD$$
 = Area $\triangle ABC$ + Area $\triangle ACD$
= $\frac{1}{2}(h \times AB)$ + $\frac{1}{2}(k \times AD)$
= $\frac{1}{2}(2)(11)$ + $\frac{1}{2}(10)(6)$
= $11 + 30$
= 41

Therefore, the area of ABCD is 41 units².