

Problem of the Week Problem D and Solution More Power, Mr. Scott!

Problem

Mr. Scott likes to pose interesting problems to his Mathematics classes. Today, he started with the expression $6^{2020} + 7^{2020}$. He stated that the expression was not equivalent to 13^{2020} and that he was not interested in the actual sum. His question to his class and to you is, "What are the final two digits of the sum?"

Solution Solution 1

Let's start by examining the last two digits of various powers of 7.

$7^1 = 07$	$7^2 = 49$	$7^3 = 343$	$7^4 = 2401$
$7^5 = 16807$	$7^6 = 117649$	$7^7 = 823543$	$7^8 = 5764801$

Notice that the last two digits repeat every four powers of 7. If the pattern continues, then 7^9 ends with 07, 7^{10} ends with 49, 7^{11} ends with 43, 7^{12} ends with 01, and so on. We can simply compute these powers of 7 to verify this for these examples, but let's justify why this pattern continues in general. If a power ends in "07", then the last 2 digits of the next power are the same as the last 2 digits of the product $07 \times 7 = 49$. That is, the last 2 digits of the next power are "49". If a power ends in "49", then the last 2 digits of the next power are the same as the last two digits of the product $49 \times 7 = 343$. That is, the last two digits of the next power are "43". If a power ends in "43", then the last 2 digits of the next power are the same as the last two digits of the product $43 \times 7 = 301$. That is, the last two digits of the next power are "01". Finally, if a power ends in "01", then the last 2 digits of the next power are the same as the last two digits of the product $01 \times 7 = 07$. That is, the last two digits of the next power are "07". Therefore, starting with the first power of 7, every four consecutive powers of 7 will have the last two digits 07, 49, 43, and 01.

We need to determine the number of complete cycles by dividing 2020 by 4. Since $2020 \div 4 = 505$, there are 505 complete cycles. This means that 7^{2020} is the last power of 7 in the 505^{th} cycle and therefore ends with 01.

Next we will examine the last two digits of various powers of 6.

$6^1 = 06$	$6^2 =$	36	$6^3 =$	216	$6^4 =$	1296	$6^5 =$	77 76	$6^6 =$	46 6 56
	$6^7 = 27$	79 9 36	$6^8 = 1$	679 6 16	$6^9 = 1$	0 077 6 96	$6^{10} = 6$	0 466 1 76	$6^{11} =$	362 797 0 56

Notice that the last two digits repeat every five powers of 6 starting with the 2^{nd} power of 6. This pattern can be justified using an argument similar to the one above for powers of 7. So 6^{12} ends with 36, 6^{13} ends with 16, 6^{14} ends with 96, 6^{15} ends with 76, 6^{16} ends with 56, and so on. Starting with the second power of 6, every five consecutive powers of 6 will have the last two digits 36, 16, 96, 76, and 56.

We need to determine the number of complete cycles in 2020 by first subtracting 1 to allow for 06 at the beginning of the list and then dividing 2020-1 or 2019 by 5. Since $2019 \div 5 = 403$ remainder 4, there are 403 complete cycles and $\frac{4}{5}$ of another cycle. Since $403 \times 5 = 2015$, $6^{2015+1} = 6^{2016}$ is the last power of 6 in the $403^{\rm rd}$ cycle and therefore ends with 56.

To go $\frac{4}{5}$ of the way into the next cycle tells us that the number 6^{2020} ends with the fourth number in the pattern, namely 76. In fact, we know that 6^{2017} ends with 36, 6^{2018} ends with 16, 6^{2019} ends with 96, 6^{2020} ends with 76, and 6^{2021} ends with 56 because they would be the numbers in the $404^{\rm th}$ complete cycle.

Therefore, 6^{2020} ends with the digits 76.

The final two digits of the sum $6^{2020} + 7^{2020}$ are found by adding the final two digits of 6^{2020} and 7^{2020} . Therefore, the final two digits of the sum are 01 + 76 = 77.

Solution 2

From the first solution, we saw that the last two digits of powers of 7 repeat every 4 consecutive powers. We also saw that the last two digits of powers of 6 repeat every 5 consecutive powers after the first power of 6.

Let's start at the second powers of both 7 and 6. We know that the last two digits of 7^2 are 49 and the last two digits of 6^2 are 36. When will this combination of last two digits occur again? The cycle length for powers of 7 is 4 and the cycle length for powers of 6 is 5.

The least common multiple of 4 and 5 is 20. It follows that 20 powers after the second power, the last two digits of the powers of 7 and 6 will end with the same two digits as the second powers of each. That is, the last two digits of 7^{22} and 7^2 are the same, namely 49. And, the last two digits of 6^{22} and 6^2 are the same, namely 36. The following table illustrates this repetition.

Powers	72	7 ³	7^{4}	7^{5}	7^{6}	7 ⁷	78	79	7 ¹⁰	7 ¹¹	7^{12}	7^{13}	7^{14}	7^{15}	7^{16}	7^{17}	7^{18}	7 ¹⁹	7 ²⁰	7 ²¹	7 ²²
Last 2 digits	49	43	01	07	49	43	01	07	49	43	01	07	49	43	01	07	49	43	01	07	49
Powers	6 ²	6^3	6^{4}	6^{5}	6 ⁶	67	68	69	6 ¹⁰	6 ¹¹	6^{12}	6^{13}	6^{14}	6^{15}	6^{16}	6^{17}	6 ¹⁸	6 ¹⁹	6 ²⁰	6^{21}	6 ²²
Last 2 digits	36	16	96	76	56	36	16	96	76	56	36	16	96	76	56	36	16	96	76	56	36

Since 2000 is a multiple of 20, we then know that the 2022nd power of 7 will end with 49 and that the 2022nd power of 6 will end in 36.

Working backwards through the cycle of the last two digits of powers of 7, it follows that the 2021st power of 7 ends in 07 and that the 2020th power of 7 ends in 01.

Working backwards through the cycle of the last two digits of powers of 6, it follows that the 2021st power of 6 ends in 56 and that the 2020th power of 6 ends in 76.

The final two digits of the sum $6^{2020} + 7^{2020}$ are found by adding the final two digits of 6^{2020} and 7^{2020} . Therefore, the final two digits of the sum are 01 + 76 = 77.