Problem of the Week
Problem D and Solution
More Power, Mr. Scott!

Problem

Mr. Scott likes to pose interesting problems to his Mathematics classes. Today, he started with the expression $6^{2020}+7^{2020}$. He stated that the expression was not equivalent to 13^{2020} and that he was not interested in the actual sum. His question to his class and to you is, "What are the final two digits of the sum?"

Solution

Solution 1

Let's start by examining the last two digits of various powers of 7 .

$7^{1}=$	07	$7^{2}=49$	$7^{3}=343$
$7^{5}=16807$	$7^{6}=117649$	$7^{4}=823543$	$7^{8}=5764801$

Notice that the last two digits repeat every four powers of 7 . If the pattern continues, then 7^{9} ends with $07,7^{10}$ ends with $49,7^{11}$ ends with $43,7^{12}$ ends with 01 , and so on. We can simply compute these powers of 7 to verify this for these examples, but let's justify why this pattern continues in general. If a power ends in " 07 ", then the last 2 digits of the next power are the same as the last 2 digits of the product $07 \times 7=49$. That is, the last 2 digits of the next power are " 49 ". If a power ends in " 49 ", then the last 2 digits of the next power are the same as the last two digits of the product $49 \times 7=343$. That is, the last two digits of the next power are " 43 ". If a power ends in " 43 ", then the last 2 digits of the next power are the same as the last two digits of the product $43 \times 7=301$. That is, the last two digits of the next power are " 01 ". Finally, if a power ends in " 01 ", then the last 2 digits of the next power are the same as the last two digits of the product $01 \times 7=07$. That is, the last two digits of the next power are " 07 ". Therefore, starting with the first power of 7 , every four consecutive powers of 7 will have the last two digits $07,49,43$, and 01.

We need to determine the number of complete cycles by dividing 2020 by 4 . Since $2020 \div 4=505$, there are 505 complete cycles. This means that 7^{2020} is the last power of 7 in the $505^{\text {th }}$ cycle and therefore ends with 01.
Next we will examine the last two digits of various powers of 6 .

$6^{1}=\mathbf{0 6}$	$6^{2}=\mathbf{3 6}$	$6^{3}=$	216	$6^{4}=$	1296	$6^{5}=$
	$6^{7}=279936$	$6^{8}=1679616$	$6^{9}=10077696$	$6^{10}=60466176$	$6^{6}=$	$6^{11}=362797056$

Notice that the last two digits repeat every five powers of 6 starting with the $2^{\text {nd }}$ power of 6 . This pattern can be justified using an argument similar to the one above for powers of 7 . So 6^{12} ends with $36,6^{13}$ ends with $16,6^{14}$ ends with $96,6^{15}$ ends with $76,6^{16}$ ends with 56 , and so on. Starting with the second power of 6 , every five consecutive powers of 6 will have the last two digits $36,16,96,76$, and 56 .
We need to determine the number of complete cycles in 2020 by first subtracting 1 to allow for 06 at the beginning of the list and then dividing $2020-1$ or 2019 by 5 . Since $2019 \div 5=403$ remainder 4 , there are 403 complete cycles and $\frac{4}{5}$ of another cycle. Since $403 \times 5=2015$, $6^{2015+1}=6^{2016}$ is the last power of 6 in the $403^{\text {rd }}$ cycle and therefore ends with 56 .

To go $\frac{4}{5}$ of the way into the next cycle tells us that the number 6^{2020} ends with the fourth number in the pattern, namely 76. In fact, we know that 6^{2017} ends with $36,6^{2018}$ ends with 16 , 6^{2019} ends with $96,6^{2020}$ ends with 76 , and 6^{2021} ends with 56 because they would be the numbers in the $404^{\text {th }}$ complete cycle.
Therefore, 6^{2020} ends with the digits 76 .
The final two digits of the sum $6^{2020}+7^{2020}$ are found by adding the final two digits of 6^{2020} and 7^{2020}. Therefore, the final two digits of the sum are $01+76=77$.

Solution 2

From the first solution, we saw that the last two digits of powers of 7 repeat every 4 consecutive powers. We also saw that the last two digits of powers of 6 repeat every 5 consecutive powers after the first power of 6 .
Let's start at the second powers of both 7 and 6 . We know that the last two digits of 7^{2} are 49 and the last two digits of 6^{2} are 36 . When will this combination of last two digits occur again? The cycle length for powers of 7 is 4 and the cycle length for powers of 6 is 5 .

The least common multiple of 4 and 5 is 20 . It follows that 20 powers after the second power, the last two digits of the powers of 7 and 6 will end with the same two digits as the second powers of each. That is, the last two digits of 7^{22} and 7^{2} are the same, namely 49. And, the last two digits of 6^{22} and 6^{2} are the same, namely 36 . The following table illustrates this repetition.

Powers	7^{2}	7^{3}	7^{4}	7^{5}	7^{6}	7^{7}	7^{8}	7^{9}	7^{10}	7^{11}	7^{12}	7^{13}	7^{14}	7^{15}	7^{16}	7^{17}	7^{18}	7^{19}	7^{20}	7^{21}	7^{22}
Last 2 digits	$\mathbf{4 9}$	43	01	07	49	43	01	07	49	43	01	07	49	43	01	07	49	43	01	07	$\mathbf{4 9}$
Powers	6^{2}	6^{3}	6^{4}	6^{5}	6^{6}	6^{7}	6^{8}	6^{9}	6^{10}	6^{11}	6^{12}	6^{13}	6^{14}	6^{15}	6^{16}	6^{17}	6^{18}	6^{19}	6^{20}	6^{21}	6^{22}
Last 2 digits	$\mathbf{3 6}$	16	96	76	56	36	16	96	76	56	36	16	96	76	56	36	16	96	76	56	$\mathbf{3 6}$

Since 2000 is a multiple of 20 , we then know that the $2022^{\text {nd }}$ power of 7 will end with 49 and that the $2022^{\text {nd }}$ power of 6 will end in 36 .

Working backwards through the cycle of the last two digits of powers of 7, it follows that the $2021^{\text {st }}$ power of 7 ends in 07 and that the $2020^{\text {th }}$ power of 7 ends in 01 .
Working backwards through the cycle of the last two digits of powers of 6 , it follows that the $2021^{\text {st }}$ power of 6 ends in 56 and that the $2020^{\text {th }}$ power of 6 ends in 76 .
The final two digits of the sum $6^{2020}+7^{2020}$ are found by adding the final two digits of 6^{2020} and 7^{2020}. Therefore, the final two digits of the sum are $01+76=77$.

