Problem of the Week Problem D and Solution Approved!

Problem

Debit and credit cards contain account numbers which consist of many digits. When purchasing items online, you are often asked to type in your account number. Because there are so many digits, it is easy to type the number incorrectly. The last digit of the number is a specially generated check digit which can be used to quickly verify the validity of the number. A common algorithm used for verifying numbers is called the Luhn Algorithm. A series of operations are performed on the number and a final result is produced. If the final result ends in zero, the number is valid. Otherwise, the number is invalid.
The steps performed in the Luhn Algorithm are outlined in the flowchart to the right.

The number 8763 D8D4 D6D8 0459 is a valid number when verified by the Luhn Algorithm. D is an integer from 0 to 9 occurring four times in the number. (It may also be one of the existing known digits.) Determine all possible values of D.

Solution

Solution 1

When the digits of the number are reversed the resulting number is $95408 D 6 D 4 D 8 D 3678$. The sum of the digits in the odd positions is

$$
A=9+4+8+6+4+8+3+7=49
$$

When the digits in the remaining positions are doubled, the following products are obtained: $2 \times 5=10 ; 2 \times 0=0 ; 2 \times D=2 D ; 2 \times 6=12 ;$ and $2 \times 8=16$.

Let x represent the sum of the digits of $2 D$.
When the digit sums from each of the products are added, the sum is:

$$
B=(1+0)+0+x+x+x+x+(1+2)+(1+6)=1+0+4 x+3+7=4 x+11
$$

Since $C=A+B$, we have $C=49+4 x+11=60+4 x$.
When an integer from 0 to 9 is doubled and the digits of the product are added together, what are the possible sums which can be obtained?

Original Digit $\rightarrow D$	0	1	2	3	4	5	6	7	8	9
Twice the Original Digit $\rightarrow 2 D$	0	2	4	6	8	10	12	14	16	18
The Sum of the Digits of $2 D$	0	2	4	6	8	1	3	5	7	9

Notice that the sum of the digits of twice the original digit can only be an integer from 0 to 9 inclusive. It follows that the only values for x are the integers from 0 to 9 .

To be a valid number, the units digit of C must be 0 . We want $60+4 x$ to be an integer greater than or equal to 60 such that the units digit is 0 .

Can $60+4 x=60$? When $4 x=0$, then $x=0,60+4 x=0$ and $D=0$. That is, when $D=0$, $2 D=0$ and the sum of the digits of $2 D$ is $x=0$. This value of D produces a valid number.
Can $60+4 x=70$? When $4 x=10$, then $x=2.5$ and $60+4 x=70$. But x must be an integer value so this is not possible.

Can $60+4 x=80$? When $4 x=20$, then $x=5,60+4 x=80$ and $D=7$. That is, when $D=7$, $2 D=14$ and the sum of the digits of $2 D$ is $x=5$. This value of D produces a valid number.
Can $60+4 x=90$? When $4 x=30$, then $x=7.5$ and $60+4 x=90$. But x must be an integer value so this is not possible.

Can $60+4 x=100$? When $4 x=40$, then $x=10$ and $60+4 x=100$. But x must be an integer from 0 to 9 inclusive, so this is not possible.

Every integer ending in 0 that is larger than 100 would produce a value for x greater than 10 . There are no more possible values for x or D.

Therefore, the two valid possibilities for D are 0 and 7 .
When $D=0$, the number is 876308040608 0459, which is indeed valid by the Luhn Algorithm. When $D=7$, the number is 8763787476780459 , which is indeed valid by the Luhn Algorithm.

Solution 2

The second solution looks at each of the possible values of D and then verifies the resulting number. A computer program or spreadsheet could be developed to solve this problem efficiently.

Remember that A is the sum of the digits in the odd positions of the reversal. Each of the digits in the even positions of the reversal are doubled and B is the sum of the sum of the digits of each of these products. C is the sum $A+B$.

D	Number	Reversal	A	Double Even Digits	B	C	Valid / Invalid
0	8763080406080459	9540806040803678	49	$10,0,0,0,0,0,12,16$	11	60	Valid
1	8763181416180459	9540816141813678	49	$10,0,2,2,2,2,12,16$	19	68	Invalid
2	8763282426280459	9540826242823678	49	$10,0,4,4,4,4,12,16$	27	76	Invalid
3	8763383436380459	9540836343833678	49	$10,0,6,6,6,6,12,16$	35	84	Invalid
4	8763484446480459	9540846444843678	49	$10,0,8,8,8,8,12,16$	43	92	Invalid
5	8763585456580459	9540856545853678	49	$10,0,10,10,10,10,12,16$	15	64	Invalid
6	8763686466680459	9540866646863678	49	$10,0,12,12,12,12,12,16$	23	72	Invalid
7	8763787476780459	9540876747873678	49	$10,0,14,14,14,14,12,16$	31	80	Valid
8	8763888486880459	9540886848883678	49	$10,0,16,16,16,16,12,16$	39	88	Invalid
9	8763989496980459	9540896949893678	49	$10,0,18,18,18,18,12,16$	47	96	Invalid

Therefore, the two valid possibilities for D are 0 and 7 .

