

Problem of the Week
 Problem D and Solution
 Different Lengths

Problem

$\triangle A B C$ is isosceles with $A B=A C$. All three side lengths of $\triangle A B C$ and also altitude $A D$ are positive integers.
If the area of $\triangle A B C$ is $60 \mathrm{~cm}^{2}$, determine all possible perimeters of $\triangle A B C$.

Solution

Let the base of $\triangle A B C$ have length b and the equal sides have length c, as shown in the diagram to the right.
The area of $\triangle A B C$ is $\frac{\text { base } \times \text { height }}{2}=\frac{b h}{2}$.
Since this area is given to be $60 \mathrm{~cm}^{2}$, we have $\frac{b h}{2}=60$ or $b h=120$.

We are given that b and h are positive integers. We will consider the positive factors of 120 to generate all possibilities for b and h. Since the altitude $A D$ bisects $B C, \triangle A B C$ is composed of two congruent right-angled triangles, each with side lengths c, h, and $\frac{b}{2}$. We will use the Pythagorean Theorem in one of these right-angled triangles to generate a value of c for each possibility.

h	b	$\frac{b}{2}$	$c^{2}=h^{2}+\left(\frac{b}{2}\right)^{2}$	Valid?
1	120	60	3601	No, c is not an integer
2	60	30	904	No, c is not an integer
3	40	20	409	No, c is not an integer
4	30	15	241	No, c is not an integer
5	24	12	169	Yes, $c=13$
6	20	10	136	No, c is not an integer
8	15	7.5	120.25	No, c is not an integer
10	12	6	136	No, c is not an integer
12	10	5	169	Yes, $c=13$
15	8	4	241	No, c is not an integer
20	6	3	409	No, c is not an integer
24	5	2.5	582.25	No, c is not an integer
30	4	2	904	No, c is not an integer
40	3	1.5	1602.25	No, c is not an integer
60	2	1	3601	No, c is not an integer
120	1	0.5	14400.25	No, c is not an integer

We see that there are two solutions for (h, b, c). They are $(5,24,13)$ and $(12,10,13)$.
The side lengths of the corresponding triangles are 24, 13, and 13 and 10, 13, and 13 .
Therefore, the perimeter of $\triangle A B C$ is either 50 cm or 36 cm .

