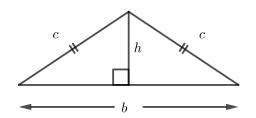


Problem of the Week Problem D and Solution Different Lengths


Problem

 $\triangle ABC$ is isosceles with AB = AC. All three side lengths of $\triangle ABC$ and also altitude AD are positive integers.

If the area of $\triangle ABC$ is 60 cm², determine all possible perimeters of $\triangle ABC$.

Solution

Let the base of $\triangle ABC$ have length b and the equal sides have length c, as shown in the diagram to the right. The area of $\triangle ABC$ is $\frac{\text{base} \times \text{height}}{2} = \frac{bh}{2}$. Since this area is given to be 60 cm², we have $\frac{bh}{2} = 60$ or bh = 120.

We are given that b and h are positive integers. We will consider the positive factors of 120 to generate all possibilities for b and h. Since the altitude AD bisects BC, $\triangle ABC$ is composed of two congruent right-angled triangles, each with side lengths c, h, and $\frac{b}{2}$. We will use the Pythagorean Theorem in one of these right-angled triangles to generate a value of c for each possibility.

h	b	$\frac{b}{2}$	$c^2 = h^2 + (\frac{b}{2})^2$	Valid?
1	120	60	3601	No, c is not an integer
2	60	30	904	No, c is not an integer
3	40	20	409	No, c is not an integer
4	30	15	241	No, c is not an integer
5	24	12	169	Yes, $c = 13$
6	20	10	136	No, c is not an integer
8	15	7.5	120.25	No, c is not an integer
10	12	6	136	No, c is not an integer
12	10	5	169	Yes, $c = 13$
15	8	4	241	No, c is not an integer
20	6	3	409	No, c is not an integer
24	5	2.5	582.25	No, c is not an integer
30	4	2	904	No, c is not an integer
40	3	1.5	1602.25	No, c is not an integer
60	2	1	3601	No, c is not an integer
120	1	0.5	14400.25	No, c is not an integer

We see that there are two solutions for (h, b, c). They are (5, 24, 13) and (12, 10, 13). The side lengths of the corresponding triangles are 24, 13, and 13 and 10, 13, and 13. Therefore, the perimeter of $\triangle ABC$ is either 50 cm or 36 cm.