

Problem of the Week
 Problem D and Solution
 To the Other Side

Problem

Points A and C are vertices of a cube with side length 2 cm , and B is the point of intersection of the diagonals of one face of the cube, as shown below. Determine the length of $C B$.

Solution

Solution 1

Label vertices D, E and G, as shown.
Drop a perpendicular from B to $A D$. Let F be the point where the perpendicular meets $A D$. Join B to F and C to F.
The faces of a cube are squares. The diagonals of a square meet at the centre of the square. Therefore, $B F=1$ and $A F=1$.
Now, $\triangle C A F$ is right-angled.
Using the Pythagorean Theorem in $\triangle C A F$,
$C F^{2}=C A^{2}+A F^{2}=2^{2}+1^{2}=5$.

Therefore, $C F=\sqrt{5}$, since $C F>0$.
Looking at $\triangle C F B$, we know from above that $C F=\sqrt{5}$ and $B F=1$. We also know that $\angle C F B=90^{\circ}$.

Because of the three-dimensional nature of the problem, it may not be obvious to all that $\angle C F B=90^{\circ}$. To help visualize this, notice that $C F$ and $B F$ lie along faces of the cube that meet at 90°.

Using the Pythagorean Theorem in $\triangle C F B$,
$C B^{2}=C F^{2}+B F^{2}=\sqrt{5}^{2}+1^{2}=5+1=6$. Since $C B>0$, we have $C B=\sqrt{6}$.
Therefore, the length of $C B$ is $\sqrt{6} \mathrm{~cm}$.

There is a second solution on the next page.

Solution 2

Label vertices D and E, as shown.
The faces of a cube are squares. The diagonals of a square right bisect each other. It follows that $A B=B E=\frac{1}{2} A E$. Since the face is a square, $\angle A D E=90^{\circ}$ and $\triangle A D E$ is right-angled. Using the Pythagorean Theorem in $\triangle A D E$, $A E^{2}=A D^{2}+D E^{2}=2^{2}+2^{2}=8$. Since $A E>0$, we have $A E=\sqrt{8}$. Then $A B=\frac{1}{2} A E=\frac{\sqrt{8}}{2}$.

Because of the three-dimensional nature of the problem, it may not be obvious to all that $\angle C A B=90^{\circ}$. To help visualize this, note that $\angle C A D=90^{\circ}$ because the face of the cube is a square. Rotate $A D$ counterclockwise about point A on the side face of the cube so that the image of $A D$ lies along $A B$. The corner angle will not change as a result of the rotation, so $\angle C A D=\angle C A B=90^{\circ}$.

We can now use the Pythagorean Theorem in $\triangle C A B$ to find the length $C B$.

$$
C B^{2}=C A^{2}+A B^{2}=2^{2}+\left(\frac{\sqrt{8}}{2}\right)^{2}=4+\frac{8}{4}=4+2=6
$$

Since $C B>0$, we have $C B=\sqrt{6} \mathrm{~cm}$.
Therefore, the length of $C B$ is $\sqrt{6} \mathrm{~cm}$.

Note, we could have simplified $A B=\frac{1}{2} A E=\frac{\sqrt{8}}{2}$ to $\sqrt{2}$ as follows:

$$
\frac{\sqrt{8}}{2}=\frac{\sqrt{4 \times 2}}{2}=\frac{\sqrt{4} \times \sqrt{2}}{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2} .
$$

The calculation of $C B$ would have been simpler using $A B=\sqrt{2}$. Often simplifying radicals is not a part of the curriculum at the grade 9 or 10 level.

