$10^{2021} 2021$ Problem of the Week Problem D and Solution
 An Exponential Year

Problem

Determine the sum of the digits in the difference when $10^{2021}-2021$ is evaluated.

Solution

Solution 1

When the number 10^{2021} is written out, there is a one followed by 2021 zeroes, for a total of 2022 digits. Let's look at what happens in our effort to subtract.

$$
\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
& & & & & & & 2 & 0 & 2 & 1 \\
\hline
\end{array}
$$

Using the standard subtraction algorithm, we start with the rightmost digits. In this case we need to borrow. But the borrowing creates a chain reaction. The result after the borrowing is complete is shown below.

The four rightmost digits in the difference are $7,9,7$, and 9 . To the left of these digits every digit is a 9 . But how many nines are there? The difference has one less digit than 10^{2021}, so has 2021 digits. We have accounted for the four rightmost digits. So to the left of 7979 there are $2021-4=2017$ nines.

Therefore, the digit sum is

$$
2017 \times 9+(7+9+7+9)=18153+32=18185 .
$$

Solution 2

The expression $10^{2021}-2021$ has the same value as $\left(10^{2021}-1\right)-(2021-1)$.
As mentioned in Solution 1, when 10^{2021} is written out, there is a one followed by 2021 zeroes, for a total of 2022 digits. The number $\left(10^{2021}-1\right)$ is one less than 10^{2021} and therefore is the positive whole number made up of exactly 2021 nines. When 1 is subtracted from 2021, the difference is 2020 . The following is the equivalent subtraction question:

The four rightmost digits in the difference are 7, 9, 7 and 9 . To the left of these digits every digit is a 9 . But how many nines are there? The difference has one less digit than 10^{2021}, so has 2021 digits. We have accounted for the four rightmost digits. So to the left of 7979 there are $2021-4=2017$ nines.
Therefore, the digit sum is

$$
2017 \times 9+(7+9+7+9)=18153+32=18185
$$

