Problem of the Week
 Problem D and Solution
 Perfect Squares

Problem

Determine the number of perfect squares less than 10000 that are divisible by 392 .
Note: A perfect square is an integer that can be expressed as the product of two equal integers. For example, 49 is a perfect square since $49=7 \times 7=7^{2}$.

Solution

In order to understand the nature of perfect squares, let's begin by examining the prime factorization of a few perfect squares.
From the example, $49=7^{2}$. Also, $36=6^{2}=(2 \times 3)^{2}=2^{2} \times 3^{2}$, and $144=12^{2}=(3 \times 4)^{2}=3^{2} \times\left(2^{2}\right)^{2}=3^{2} \times 2^{4}$.
From the above examples, we note that, for each perfect square, the exponent on each of its prime factors is an even integer greater than 0 . This is because a perfect square is created by multiplying an integer by itself, so all of the primes in the factorization of the integer will appear twice. Also, for any integer a, if m is an even integer greater than or equal to zero, then a^{m} is a perfect square. This is because if m is an even integer greater than or equal to 0 , then $m=2 n$ for some integer n greater than or equal to 0 , and so $a^{m}=a^{2 n}=a^{n} \times a^{n}$, where a^{n} is an integer.
To summarize, a positive integer is a perfect square exactly when the exponent on each prime in its prime factorization is even.
The number $392=8 \times 49=2^{3} \times 7^{2}$. This is not a perfect square since the power 2^{3} has an odd exponent. We require another factor of 2 to obtain a multiple of 392 that is a perfect square, namely $2 \times 392=784$. The number
$784=2^{4} \times 7^{2}=\left(2^{2} \times 7\right)^{2}=28^{2}$, and is the first perfect square less than 10000 that is divisible by 392 .
To find all the perfect squares less than 10000 that are multiples of 392 , we will multiply 784 by squares of positive integers, until we reach a product larger than 10000.

If we multiply 784 by 2^{2}, we obtain 3136 which is 56^{2}, a second perfect square less than 10000 . If we multiply 784 by 3^{2}, we obtain 7056 which is 84^{2}, a third perfect square less than 10000 .
If we multiply 784 by 4^{2}, we obtain 12544 which is a greater than 10000 . No other perfect squares divisible by 392 exist that are less than 10000 .
Therefore, there are 3 perfect squares less than 10000 that are divisible by 392 .

