Problem of the Week Problem C
 Domi Knows

A domino tile is a rectangular tile with a line dividing its face into two square ends. Each end is marked with a number of dots (also called pips) or is blank.
The first domino shown below is a $[3,5]$ domino, since there are 3 pips on its left end and 5 pips on its right end. The second domino shown below is a $[0,3]$ domino, since there are 0 pips on its left end and 3 pips on its right end. The third domino shown below is a $[4,4]$ domino, since there are 4 pips on its left end and 4 pips on its right end.

We can also rotate the domino tiles. The first domino shown below is a $[5,3]$ domino, since there are 5 pips on its left end and 3 pips on its right end. However, since this tile can be obtained by rotating the $[3,5]$ tile, $[5,3]$ and $[3,5]$ represent the same domino. Similarly, the second domino shown below is a $[3,0]$ domino. Again, note that $[3,0]$ and $[0,3]$ represent the same domino.

A 2-set of dominoes contains all possible tiles with the number of pips on any end ranging from 0 to 2 , with no two dominoes being the same. A 2 -set of dominoes has the following six tiles: $[0,0],[0,1],[0,2],[1,1],[1,2],[2,2]$. Notice that the three dominoes $[1,0],[2,0]$, and $[2,1]$ are not listed because they are the same as the three dominoes $[0,1],[0,2]$, and $[1,2]$.
Similarly, a 12 -set of dominoes contains all possible tiles with the number of pips on any end ranging from 0 to 12 , with no two dominoes being the same.
Domi purchased a 12 -set of dominoes. How many tiles are in the set?

