

Problem of the Week Problem E and Solution
 Three Squares

Problem

The three squares $A B C D, A E F G$, and $A H J K$ overlap as shown in the diagram.
The side length of each square, in centimetres, is a positive integer. The area of square $A E F G$ that is not covered by square $A B C D$ is $33 \mathrm{~cm}^{2}$. That is, the area of the shaded region $B E F G D C$ is $33 \mathrm{~cm}^{2}$. If $D G=G K$, determine all possible side lengths of each square.

Solution

Let $A D=x \mathrm{~cm}$ and $D G=y \mathrm{~cm}$. Therefore $G K=D G=y \mathrm{~cm}$. Also, since the side length of each square is an integer, x and y are integers.
The shaded region has area $33 \mathrm{~cm}^{2}$. The shaded region is equal to the area of the square with side length $A G$ minus the area of the square with side length $A D$.

Since $A D=x$ and $A G=A D+D G=x+y$, we have

$$
\begin{aligned}
33 & =(\text { area of square with side length } A G)-(\text { area of square with side length } A D) \\
& =(x+y)^{2}-x^{2} \\
& =x^{2}+2 x y+y^{2}-x^{2} \\
& =2 x y+y^{2} \\
& =y(2 x+y)
\end{aligned}
$$

Since x and y are integers, so is $2 x+y$. Therefore, $2 x+y$ and y are two positive integers that multiply to give 33. Therefore, we must have $y=1$ and $2 x+y=33$, or $y=3$ and $2 x+y=11$, or $y=11$ and $2 x+y=3$, or $y=33$ and $2 x+y=1$. The last two would imply that $x<0$, which is not possible. Therefore, $y=1$ and $2 x+y=33$, or $y=3$ and $2 x+y=11$.

When $y=1$ and $2 x+y=33$, it follows that $x=16$. Then square $A B C D$ has side length $x=16 \mathrm{~cm}$, square $A E F G$ has side length $x+y=17 \mathrm{~cm}$, and square $A H J K$ has side length $x+2 y=18 \mathrm{~cm}$.

When $y=3$ and $2 x+y=11$, it follows that $x=4$. Then square $A B C D$ has side length $x=4$ cm , square $A E F G$ has side length $x+y=7 \mathrm{~cm}$, and square $A H J K$ has side length $x+2 y=10 \mathrm{~cm}$.

Therefore, there are two possible sets of squares. The squares are either $16 \mathrm{~cm} \times 16 \mathrm{~cm}$ and 17 $\mathrm{cm} \times 17 \mathrm{~cm}$ and $18 \mathrm{~cm} \times 18 \mathrm{~cm}$, or $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ and $7 \mathrm{~cm} \times 7 \mathrm{~cm}$ and $10 \mathrm{~cm} \times 10 \mathrm{~cm}$. Each of these sets of squares satisfies the conditions of the problem.

