

Problem of the Week
 Problem E and Solution
 The Other Side

Problem

In $\triangle S T U$, a median is drawn from vertex S, meeting side $T U$ at point M. The length of side $S T$ is 7 cm , the length of side $S U$ is 9 cm , and the length of the median $S M$ is 7 cm .
Determine the length of $T U$.

Solution

Solution 1

Since $S T=S M=7, \triangle S T M$ is isosceles. In $\triangle S T M$, draw an altitude from vertex S to $T M$, intersecting $T M$ at N. Let $T N=x$. In an isosceles triangle, the altitude drawn to the base bisects the base. Therefore, $N M=T N=x$. Since $S M$ is a median in $\triangle S T U$, it follows that $M U=T M=2 x$. Let $S N=h$.

Since $\triangle S N M$ is a right-angled triangle, we can use the Pythagorean Theorem as follows.

$$
\begin{align*}
S N^{2} & =S M^{2}-N M^{2} \\
h^{2} & =7^{2}-x^{2} \\
h^{2} & =49-x^{2} \tag{1}
\end{align*}
$$

Since $\triangle S N U$ is a right-angled triangle, we can use the Pythagorean Theorem as follows.

$$
\begin{align*}
S N^{2} & =S U^{2}-N U^{2} \\
h^{2} & =9^{2}-(x+2 x)^{2} \\
h^{2} & =81-(3 x)^{2} \\
h^{2} & =81-9 x^{2} \tag{2}
\end{align*}
$$

In both equations (1) and (2), the left side is h^{2}. Therefore, the right side of equation (1) must equal the right side of equation (2).

$$
\begin{aligned}
49-x^{2} & =81-9 x^{2} \\
-x^{2}+9 x^{2} & =81-49 \\
8 x^{2} & =32 \\
x^{2} & =4
\end{aligned}
$$

Since $x>0$, it follows that $x=2$.
Therefore, $T U=T N+N M+M U=x+x+2 x=4 x=4(2)=8 \mathrm{~cm}$.

Solution 2

This solution is presented for students who have done some trigonometry and know the Cosine Law. Since $S M$ is a median, let $T M=M U=y$. Then $T U=2 y$.
Using the Cosine Law in $\triangle S T M$,

$$
\begin{align*}
S M^{2} & =S T^{2}+T M^{2}-2(S T)(T M) \cos T \\
7^{2} & =7^{2}+y^{2}-2(7)(y) \cos T \\
49 & =49+y^{2}-14 y \cos T \\
14 y \cos T & =y^{2} \tag{1}
\end{align*}
$$

Using the Cosine Law in $\triangle S T U$,

$$
\begin{align*}
S U^{2} & =S T^{2}+T U^{2}-2(S T)(T U) \cos T \\
9^{2} & =7^{2}+(2 y)^{2}-2(7)(2 y) \cos T \\
81 & =49+4 y^{2}-28 y \cos T \\
28 y \cos T & =4 y^{2}-32 \\
14 y \cos T & =2 y^{2}-16 \tag{2}
\end{align*}
$$

Subtracting equation (2) from equation (1) allows us to solve for y.

$$
\begin{align*}
14 y \cos T & =y^{2} \tag{1}\\
14 y \cos T & =2 y^{2}-16 \tag{2}\\
0 & =-y^{2}+16 \\
y^{2} & =16
\end{align*}
$$

Since $y>0$, it follows that $y=4$.
Therefore, the length of $T U$ is $2(4)=8 \mathrm{~cm}$.

