Problem of the Week
 Problem E and Solution
 The Angle Between

Problem

Rectangle $P Q R S$ has $P Q=3$ and $Q R=4$. Points T and U are on side $P S$ such that $P T=U S=1$. Determine the measure of $\angle T Q U$, in degrees and rounded to 1 decimal place.

Solution

Let X be the point on $Q R$ such that $U X$ is parallel to $S R$. Then $\angle U X Q=90^{\circ}$. Also, $U X=S R=3$, $X R=U S=1$, and therefore $Q X=3$.
It follows that $\triangle U X Q$ is an isosceles right-angled triangle, and so $\angle U Q X=\angle Q U X=45^{\circ}$.
From here we present three different solutions.

Solution 1

Since $\triangle T P Q$ is a right-angled triangle, $\tan (\angle T Q P)=\frac{1}{3}$, and so $\angle T Q P \approx 18.4^{\circ}$. Since $\angle P Q X=90^{\circ}$, we can calculate the value of $\angle T Q U$ as follows.

$$
\begin{aligned}
& \angle P Q X=\angle P Q T+\angle T Q U+\angle U Q X \\
& \angle T Q U=\angle P Q X-\angle P Q T-\angle U Q X \\
& \angle T Q U \approx 90^{\circ}-18.4^{\circ}-45^{\circ} \\
& \angle T Q U \approx 26.6^{\circ}
\end{aligned}
$$

Therefore, $\angle T Q U \approx 26.6^{\circ}$.

Solution 2

Since $\triangle T P Q$ is a right-angled triangle, by the Pythagorean Theorem, $T Q^{2}=P T^{2}+P Q^{2}=1^{2}+3^{2}=10$. Therefore $T Q=\sqrt{10}$, since $T Q>0$.
Since $P Q R S$ is a rectangle, $P S=Q R=4$, and $P T=U S=1$, it follows that $T U=2$. Since $\triangle U X Q$ is a right-angled triangle, by the Pythagorean Theorem, $Q U^{2}=U X^{2}+Q X^{2}=3^{2}+3^{2}=18$. Therefore $Q U=\sqrt{18}$, since $Q U>0$. Now we will use the cosine law in $\triangle T Q U$.

$$
\begin{aligned}
T U^{2} & =T Q^{2}+Q U^{2}-2(T Q)(Q U) \cos (\angle T Q U) \\
2^{2} & =10+18-2(\sqrt{10})(\sqrt{18}) \cos (\angle T Q U) \\
4-10-18 & =-2 \sqrt{10} \sqrt{18} \cos (\angle T Q U) \\
-24 & =-2 \sqrt{10} \sqrt{18} \cos (\angle T Q U) \\
\frac{12}{\sqrt{10} \sqrt{18}} & =\cos (\angle T Q U) \\
\angle T Q U & \approx 26.6^{\circ}
\end{aligned}
$$

Therefore, $\angle T Q U \approx 26.6^{\circ}$.

Solution 3

Since $\triangle T P Q$ is a right-angled triangle, by the Pythagorean Theorem, $T Q^{2}=P T^{2}+P Q^{2}=1^{2}+3^{2}=10$. Therefore $T Q=\sqrt{10}$, since $T Q>0$.
Since $P Q R S$ is a rectangle, $P S=Q R=4$, and $P T=U S=1$, it follows that $T U=2$.
Since $U X$ is parallel to $S R$, then $\angle P U X=90^{\circ}$. Since $\angle Q U X=45^{\circ}$, it follows that $\angle T U Q=45^{\circ}$.
Now we will use the sine law in $\triangle T Q U$.

$$
\begin{aligned}
\frac{\sin (\angle T Q U)}{T U} & =\frac{\sin (\angle T U Q)}{T Q} \\
\frac{\sin (\angle T Q U)}{2} & =\frac{\sin 45^{\circ}}{\sqrt{10}} \\
\angle T Q U & \approx 26.6^{\circ}
\end{aligned}
$$

Therefore, $\angle T Q U \approx 26.6^{\circ}$.

