Problem of the Week Problem E and Solution The Angle Between

Problem

Rectangle PQRS has PQ = 3 and QR = 4. Points T and U are on side PS such that PT = US = 1. Determine the measure of $\angle TQU$, in degrees and rounded to 1 decimal place.

Solution

Let X be the point on QR such that UX is parallel to SR. Then $\angle UXQ = 90^{\circ}$. Also, UX = SR = 3, XR = US = 1, and therefore QX = 3. It follows that $\triangle UXQ$ is an isosceles right-angled triangle, and so $\angle UQX = \angle QUX = 45^{\circ}$. From here we present three different solutions.

Solution 1

Since $\triangle TPQ$ is a right-angled triangle, $\tan(\angle TQP) = \frac{1}{3}$, and so $\angle TQP \approx 18.4^{\circ}$. Since $\angle PQX = 90^{\circ}$, we can calculate the value of $\angle TQU$ as follows.

$$\angle PQX = \angle PQT + \angle TQU + \angle UQX \angle TQU = \angle PQX - \angle PQT - \angle UQX \angle TQU \approx 90^{\circ} - 18.4^{\circ} - 45^{\circ} \angle TQU \approx 26.6^{\circ}$$

Therefore, $\angle TQU \approx 26.6^{\circ}$.

Solution 2

Since $\triangle TPQ$ is a right-angled triangle, by the Pythagorean Theorem, $TQ^2 = PT^2 + PQ^2 = 1^2 + 3^2 = 10$. Therefore $TQ = \sqrt{10}$, since TQ > 0. Since PQRS is a rectangle, PS = QR = 4, and PT = US = 1, it follows that TU = 2. Since $\triangle UXQ$ is a right-angled triangle, by the Pythagorean Theorem, $QU^2 = UX^2 + QX^2 = 3^2 + 3^2 = 18$. Therefore $QU = \sqrt{18}$, since QU > 0. Now we will use the cosine law in $\triangle TQU$.

Solution 3

Since $\triangle TPQ$ is a right-angled triangle, by the Pythagorean Theorem, $TQ^2 = PT^2 + PQ^2 = 1^2 + 3^2 = 10$. Therefore $TQ = \sqrt{10}$, since TQ > 0. Since PQRS is a rectangle, PS = QR = 4, and PT = US = 1, it follows that

Since PQRS is a rectangle, PS = QR = 4, and PT = US = 1, it follows that TU = 2.

Since UX is parallel to SR, then $\angle PUX = 90^{\circ}$. Since $\angle QUX = 45^{\circ}$, it follows that $\angle TUQ = 45^{\circ}$.

Now we will use the sine law in $\triangle TQU$.

$$\frac{\sin(\angle TQU)}{TU} = \frac{\sin(\angle TUQ)}{TQ}$$
$$\frac{\sin(\angle TQU)}{2} = \frac{\sin 45^{\circ}}{\sqrt{10}}$$
$$\angle TQU \approx 26.6^{\circ}$$

Therefore, $\angle TQU \approx 26.6^{\circ}$.

