

Problem of the Week
Problem E and Solution
A Square in a Triangle

## Problem

In $\triangle A B C$, there is a right angle at $B$ and the length of $B C$ is twice the length of $A B$. In other words, $B C=2 A B$. Square $D E F B$ is drawn inside $\triangle A B C$ so that vertex $D$ is somewhere on $A B$ between $A$ and $B$, vertex $E$ is somewhere on $A C$ between $A$ and $C$, vertex $F$ is somewhere on $B C$ between $B$ and $C$, and the final vertex is at $B$.
Square $D E F B$ is called an inscribed square. Determine the ratio of the area of the inscribed square $D E F B$ to the area of $\triangle A B C$.

## Solution

First we draw square $D E F B$ according to the instructions in the problem. Let $D B=B F=F E=E D=a$ and
$A D=b$. Since $B C=2 A B$, it follows that
$B C=2(A D+D B)=2(a+b)=2 a+2 b$. Since $B C=B F+F C$, it follows that $2 a+2 b=a+F C$, so $F C=a+2 b$.


From here we present two solutions. In Solution 1, we solve the problem using similar triangles. In Solution 2, we place the diagram on the $x y$-plane and solve the problem using analytic geometry.

## Solution 1

Consider $\triangle A D E$ and $\triangle A B C$. We will first show that $\triangle A D E \sim \triangle A B C$.
Since $D E F B$ is a square, then $\angle E D B=90^{\circ}$, and so
$\angle E D A=180^{\circ}-\angle E D B=180^{\circ}-90^{\circ}=90^{\circ}$. Therefore, $\angle E D A=\angle A B C$. Also,
$\angle D A E=\angle B A C$ since they represent the same angle. Since the angles in a triangle add to $180^{\circ}$, then we must also have $\angle A E D=\angle A C B$.

So $\triangle A D E \sim \triangle A B C$, by Angle-Angle-Angle Triangle Similarity.
Since $\triangle A D E \sim \triangle A B C$, then corresponding side lengths are in the same ratio. In particular,

$$
\begin{aligned}
\frac{A D}{D E} & =\frac{A B}{B C} \\
\frac{A D}{D E} & =\frac{A B}{2 A B} \\
\frac{b}{a} & =\frac{1}{2} \\
a & =2 b
\end{aligned}
$$

Since $B C=2 a+2 b$ and $a=2 b$, then $B C=2(2 b)+2 b=6 b$. Since $A B=a+b$ and $a=2 b$, then $A B=2 b+b=3 b$. The area of $\triangle A B C$ is $\frac{1}{2}(B C \times A B)=\frac{1}{2}(6 b \times 3 b)=9 b^{2}$.
The area of square $D E F B$ is $a \times a=a^{2}=(2 b)^{2}=4 b^{2}$.
The ratio of the area of inscribed square $D E F B$ to the area of $\triangle A B C$ is $4 b^{2}: 9 b^{2}=4: 9$, since $b>0$.

## Solution 2

First we place the triangle on the $x y$-plane with $B$ at $(0,0)$ and $B C$ along the positive $x$-axis. The coordinates of $D$ are $(0, a)$, the coordinates of $A$ are $(0, a+b)$, the coordinates of $F$ are $(a, 0)$, the coordinates of $E$ are $(a, a)$, and the coordinates of $C$ are $(2 a+2 b, 0)$.


Let's determine the equation of the line through $A, E$, and $C$.
Since this line passes through $(0, a+b)$, then we know it has $y$-intercept $a+b$.
Since it passes through $(0, a+b)$ and $(a, a)$, then the line has slope $\frac{a-(a+b)}{a-0}=-\frac{b}{a}$.
Therefore, the equation of the line through $A, E$, and $C$ is $y=\left(-\frac{b}{a}\right) x+a+b$.
Since $C(2 a+2 b, 0)$ lies on this line, then substituting $x=2 a+2 b$ and $y=0$ into $y=\left(-\frac{b}{a}\right) x+a+b$ gives

$$
\begin{aligned}
& 0=\left(-\frac{b}{a}\right)(2 a+2 b)+a+b \\
& 0=(-b)(2 a+2 b)+(a)(a+b) \\
& 0=-2 a b-2 b^{2}+a^{2}+a b \\
& 0=a^{2}-a b-2 b^{2} \\
& 0=(a+b)(a-2 b)
\end{aligned}
$$

Thus, $a=-b$ or $a=2 b$. But since $a, b>0$, then $a=-b$ is inadmissible and we must have $a=2 b$.

Since $B C=2 a+2 b$ and $a=2 b$, then $B C=2(2 b)+2 b=6 b$. Since $A B=a+b$ and $a=2 b$, then $A B=2 b+b=3 b$. The area of $\triangle A B C$ is $\frac{1}{2}(B C \times A B)=\frac{1}{2}(6 b \times 3 b)=9 b^{2}$.

The area of square $D E F B$ is $a \times a=a^{2}=(2 b)^{2}=4 b^{2}$.
The ratio of the area of inscribed square $D E F B$ to the area of $\triangle A B C$ is $4 b^{2}: 9 b^{2}=4: 9$, since $b>0$.

## Note:

From the equation $0=(-b)(2 a+2 b)+(a)(a+b)$, we could have instead factored $(2 a+2 b)$ to obtain $0=(-2 b)(a+b)+a(a+b)$. Since $a, b>0, a+b>0$, so we could have divided out the common factor of $(a+b)$ leaving $0=-2 b+a$ which simplifies to $a=2 b$. Thus, the factoring of $a^{2}-a b-2 b^{2}$ to determine $a=2 b$ would not have been necessary.

## Extension:

If, in the original problem, $B C=k A B$, where $k>0$, and the square was inscribed as given, what would be the ratio of the area of square $D E F B$ to the area of $\triangle A B C$ ?

